Optimal. Leaf size=24 \[ \log \left (2+\frac {1}{2 x}+2 x+\log (4)+\frac {1}{8} x \log \left (x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4+18 x^2+x^2 \log \left (x^2\right )}{4 x+16 x^2+16 x^3+8 x^2 \log (4)+x^3 \log \left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4+18 x^2+x^2 \log \left (x^2\right )}{4 x+16 x^3+x^2 (16+8 \log (4))+x^3 \log \left (x^2\right )} \, dx\\ &=\int \left (\frac {1}{x}+\frac {2 \left (-4+x^2-4 x (2+\log (4))\right )}{x \left (4+16 x^2+16 x (1+\log (2))+x^2 \log \left (x^2\right )\right )}\right ) \, dx\\ &=\log (x)+2 \int \frac {-4+x^2-4 x (2+\log (4))}{x \left (4+16 x^2+16 x (1+\log (2))+x^2 \log \left (x^2\right )\right )} \, dx\\ &=\log (x)+2 \int \left (\frac {4}{x \left (-4-16 x^2-16 x (1+\log (2))-x^2 \log \left (x^2\right )\right )}+\frac {x}{4+16 x^2+16 x (1+\log (2))+x^2 \log \left (x^2\right )}+\frac {4 (-2-\log (4))}{4+16 x^2+16 x (1+\log (2))+x^2 \log \left (x^2\right )}\right ) \, dx\\ &=\log (x)+2 \int \frac {x}{4+16 x^2+16 x (1+\log (2))+x^2 \log \left (x^2\right )} \, dx+8 \int \frac {1}{x \left (-4-16 x^2-16 x (1+\log (2))-x^2 \log \left (x^2\right )\right )} \, dx-(8 (2+\log (4))) \int \frac {1}{4+16 x^2+16 x (1+\log (2))+x^2 \log \left (x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 29, normalized size = 1.21 \begin {gather*} -\log (x)+\log \left (4+16 x+16 x^2+8 x \log (4)+x^2 \log \left (x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 35, normalized size = 1.46 \begin {gather*} \frac {1}{2} \, \log \left (x^{2}\right ) + \log \left (\frac {x^{2} \log \left (x^{2}\right ) + 16 \, x^{2} + 16 \, x \log \relax (2) + 16 \, x + 4}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 29, normalized size = 1.21 \begin {gather*} \log \left (x^{2} \log \left (x^{2}\right ) + 16 \, x^{2} + 16 \, x \log \relax (2) + 16 \, x + 4\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 30, normalized size = 1.25
method | result | size |
risch | \(\ln \relax (x )+\ln \left (\ln \left (x^{2}\right )+\frac {16 x \ln \relax (2)+16 x^{2}+16 x +4}{x^{2}}\right )\) | \(30\) |
norman | \(-\frac {\ln \left (x^{2}\right )}{2}+\ln \left (x^{2} \ln \left (x^{2}\right )+16 x \ln \relax (2)+16 x^{2}+16 x +4\right )\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 28, normalized size = 1.17 \begin {gather*} \log \relax (x) + \log \left (\frac {x^{2} \log \relax (x) + 8 \, x^{2} + 8 \, x {\left (\log \relax (2) + 1\right )} + 2}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.34, size = 31, normalized size = 1.29 \begin {gather*} \ln \left (16\,x+16\,x\,\ln \relax (2)+x^2\,\ln \left (x^2\right )+16\,x^2+4\right )-\frac {\ln \left (x^2\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 29, normalized size = 1.21 \begin {gather*} \log {\relax (x )} + \log {\left (\log {\left (x^{2} \right )} + \frac {16 x^{2} + 16 x \log {\relax (2 )} + 16 x + 4}{x^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________