Optimal. Leaf size=17 \[ 9 \log \left (-6+\frac {e^{e^{2+x}}}{4}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {6684} \begin {gather*} 9 \log \left (-4 x-e^{e^{x+2}}+24\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=9 \log \left (24-e^{e^{2+x}}-4 x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 16, normalized size = 0.94 \begin {gather*} 9 \log \left (e^{e^{2+x}}+4 (-6+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 25, normalized size = 1.47 \begin {gather*} -9 \, x + 9 \, \log \left (4 \, {\left (x - 6\right )} e^{\left (x + 2\right )} + e^{\left (x + e^{\left (x + 2\right )} + 2\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {9 \, {\left (e^{\left (x + e^{\left (x + 2\right )} + 2\right )} + 4\right )}}{4 \, x + e^{\left (e^{\left (x + 2\right )}\right )} - 24}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 14, normalized size = 0.82
method | result | size |
default | \(9 \ln \left ({\mathrm e}^{{\mathrm e}^{2+x}}+4 x -24\right )\) | \(14\) |
norman | \(9 \ln \left ({\mathrm e}^{{\mathrm e}^{2+x}}+4 x -24\right )\) | \(14\) |
risch | \(9 \ln \left ({\mathrm e}^{{\mathrm e}^{2+x}}+4 x -24\right )\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 13, normalized size = 0.76 \begin {gather*} 9 \, \log \left (4 \, x + e^{\left (e^{\left (x + 2\right )}\right )} - 24\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.11, size = 13, normalized size = 0.76 \begin {gather*} 9\,\ln \left (x+\frac {{\mathrm {e}}^{{\mathrm {e}}^{x+2}}}{4}-6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 14, normalized size = 0.82 \begin {gather*} 9 \log {\left (4 x + e^{e^{x + 2}} - 24 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________