3.18.32 \(\int \frac {-3-2 x+3 x^2+\log (\frac {3}{\log (5)})}{-3 x-x^2+x^3+x \log (\frac {3}{\log (5)})} \, dx\)

Optimal. Leaf size=20 \[ \log \left (x \left (-3-(1-x) x+\log \left (\frac {3}{\log (5)}\right )\right )\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 23, normalized size of antiderivative = 1.15, number of steps used = 2, number of rules used = 2, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {6, 1587} \begin {gather*} \log \left (-x^3+x^2+x \left (3-\log \left (\frac {3}{\log (5)}\right )\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-3 - 2*x + 3*x^2 + Log[3/Log[5]])/(-3*x - x^2 + x^3 + x*Log[3/Log[5]]),x]

[Out]

Log[x^2 - x^3 + x*(3 - Log[3/Log[5]])]

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 1587

Int[(Pp_)/(Qq_), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[(Coeff[Pp, x, p]*Log[RemoveConte
nt[Qq, x]])/(q*Coeff[Qq, x, q]), x] /; EqQ[p, q - 1] && EqQ[Pp, Simplify[(Coeff[Pp, x, p]*D[Qq, x])/(q*Coeff[Q
q, x, q])]]] /; PolyQ[Pp, x] && PolyQ[Qq, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3-2 x+3 x^2+\log \left (\frac {3}{\log (5)}\right )}{-x^2+x^3+x \left (-3+\log \left (\frac {3}{\log (5)}\right )\right )} \, dx\\ &=\log \left (x^2-x^3+x \left (3-\log \left (\frac {3}{\log (5)}\right )\right )\right )\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 21, normalized size = 1.05 \begin {gather*} \log (x)+\log \left (3+x-x^2-\log \left (\frac {3}{\log (5)}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-3 - 2*x + 3*x^2 + Log[3/Log[5]])/(-3*x - x^2 + x^3 + x*Log[3/Log[5]]),x]

[Out]

Log[x] + Log[3 + x - x^2 - Log[3/Log[5]]]

________________________________________________________________________________________

fricas [A]  time = 0.75, size = 22, normalized size = 1.10 \begin {gather*} \log \left (x^{3} - x^{2} + x \log \left (\frac {3}{\log \relax (5)}\right ) - 3 \, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(3/log(5))+3*x^2-2*x-3)/(x*log(3/log(5))+x^3-x^2-3*x),x, algorithm="fricas")

[Out]

log(x^3 - x^2 + x*log(3/log(5)) - 3*x)

________________________________________________________________________________________

giac [A]  time = 0.20, size = 23, normalized size = 1.15 \begin {gather*} \log \left ({\left | x^{3} - x^{2} + x \log \left (\frac {3}{\log \relax (5)}\right ) - 3 \, x \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(3/log(5))+3*x^2-2*x-3)/(x*log(3/log(5))+x^3-x^2-3*x),x, algorithm="giac")

[Out]

log(abs(x^3 - x^2 + x*log(3/log(5)) - 3*x))

________________________________________________________________________________________

maple [A]  time = 0.06, size = 19, normalized size = 0.95




method result size



default \(\ln \left (x \left (x^{2}+\ln \left (\frac {3}{\ln \relax (5)}\right )-x -3\right )\right )\) \(19\)
norman \(\ln \relax (x )+\ln \left (x^{2}+\ln \left (\frac {3}{\ln \relax (5)}\right )-x -3\right )\) \(20\)
risch \(\ln \left (x^{3}-x^{2}+\left (\ln \relax (3)-\ln \left (\ln \relax (5)\right )-3\right ) x \right )\) \(22\)
derivativedivides \(\ln \left (x \ln \left (\frac {3}{\ln \relax (5)}\right )+x^{3}-x^{2}-3 x \right )\) \(23\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((ln(3/ln(5))+3*x^2-2*x-3)/(x*ln(3/ln(5))+x^3-x^2-3*x),x,method=_RETURNVERBOSE)

[Out]

ln(x*(x^2+ln(3/ln(5))-x-3))

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 22, normalized size = 1.10 \begin {gather*} \log \left (x^{3} - x^{2} + x \log \left (\frac {3}{\log \relax (5)}\right ) - 3 \, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(3/log(5))+3*x^2-2*x-3)/(x*log(3/log(5))+x^3-x^2-3*x),x, algorithm="maxima")

[Out]

log(x^3 - x^2 + x*log(3/log(5)) - 3*x)

________________________________________________________________________________________

mupad [B]  time = 0.18, size = 22, normalized size = 1.10 \begin {gather*} \ln \left (x^3-x^2+\left (\ln \relax (3)-\ln \left (\ln \relax (5)\right )-3\right )\,x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x - log(3/log(5)) - 3*x^2 + 3)/(3*x - x*log(3/log(5)) + x^2 - x^3),x)

[Out]

log(x^3 - x^2 - x*(log(log(5)) - log(3) + 3))

________________________________________________________________________________________

sympy [A]  time = 0.43, size = 19, normalized size = 0.95 \begin {gather*} \log {\left (x^{3} - x^{2} + x \left (-3 - \log {\left (\log {\relax (5 )} \right )} + \log {\relax (3 )}\right ) \right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((ln(3/ln(5))+3*x**2-2*x-3)/(x*ln(3/ln(5))+x**3-x**2-3*x),x)

[Out]

log(x**3 - x**2 + x*(-3 - log(log(5)) + log(3)))

________________________________________________________________________________________