Optimal. Leaf size=23 \[ \frac {1}{4} \left (-3+x+\frac {1}{x+\frac {3}{i \pi +\log (25)}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 35, normalized size of antiderivative = 1.52, number of steps used = 5, number of rules used = 4, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {27, 6, 12, 1850} \begin {gather*} \frac {x}{4}-\frac {\pi -i \log (25)}{4 (3 i-x (\pi -i \log (25)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int -\frac {9+6 x (i \pi +\log (25))+\left (-1+x^2\right ) (i \pi +\log (25))^2}{4 (-3 i+\pi x-i x \log (25))^2} \, dx\\ &=\int \frac {-9-6 x (i \pi +\log (25))-\left (-1+x^2\right ) (i \pi +\log (25))^2}{4 (-3 i+x (\pi -i \log (25)))^2} \, dx\\ &=\frac {1}{4} \int \frac {-9-6 x (i \pi +\log (25))-\left (-1+x^2\right ) (i \pi +\log (25))^2}{(-3 i+x (\pi -i \log (25)))^2} \, dx\\ &=\frac {1}{4} \int \left (1-\frac {(\pi -i \log (25))^2}{(3 i-x (\pi -i \log (25)))^2}\right ) \, dx\\ &=\frac {x}{4}-\frac {\pi -i \log (25)}{4 (3 i-x (\pi -i \log (25)))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.04, size = 76, normalized size = 3.30 \begin {gather*} -\frac {9-\pi ^2 \left (1+x^2\right )+6 x \log (25)+\log ^2(25)+x^2 \log ^2(25)+2 i \pi \left (3 x+\log (25)+x^2 \log (25)\right )}{4 (\pi -i \log (25)) (\pi x-i (3+x \log (25)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 36, normalized size = 1.57 \begin {gather*} \frac {i \, \pi + i \, \pi x^{2} + 2 \, {\left (x^{2} + 1\right )} \log \relax (5) + 3 \, x}{4 i \, \pi x + 8 \, x \log \relax (5) + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 62, normalized size = 2.70 \begin {gather*} \frac {\pi ^{2} x - 4 i \, \pi x \log \relax (5) - 4 \, x \log \relax (5)^{2}}{4 \, {\left (\pi ^{2} - 4 i \, \pi \log \relax (5) - 4 \, \log \relax (5)^{2}\right )}} + \frac {-i \, \pi - 2 \, \log \relax (5)}{4 \, {\left (-i \, \pi x - 2 \, x \log \relax (5) - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.70, size = 41, normalized size = 1.78
method | result | size |
risch | \(\frac {x}{4}-\frac {i \ln \relax (5)}{2 \left (-2 i x \ln \relax (5)+\pi x -3 i\right )}+\frac {\pi }{-8 i x \ln \relax (5)+4 \pi x -12 i}\) | \(41\) |
default | \(\frac {x}{4}-\frac {-\pi ^{2}+4 i \pi \ln \relax (5)+4 \ln \relax (5)^{2}}{4 \left (-2 i \ln \relax (5)+\pi \right ) \left (-2 i x \ln \relax (5)+\pi x -3 i\right )}\) | \(48\) |
norman | \(\frac {\left (\frac {\pi ^{2}}{4}+\ln \relax (5)^{2}\right ) x^{3}+\left (\frac {9}{4}+\frac {\pi ^{2}}{4}-\ln \relax (5)^{2}-i \pi \ln \relax (5)\right ) x +\left (-\frac {i \pi ^{3}}{12}-\frac {i \pi \ln \relax (5)^{2}}{3}-\frac {\pi ^{2} \ln \relax (5)}{6}-\frac {2 \ln \relax (5)^{3}}{3}+3 \ln \relax (5)\right ) x^{2}}{\pi ^{2} x^{2}+4 x^{2} \ln \relax (5)^{2}+12 x \ln \relax (5)+9}\) | \(99\) |
gosper | \(-\frac {\left (-2 i x \ln \relax (5)+\pi x -3 i\right ) x \left (4 \pi \ln \relax (5)+i \pi ^{2}-4 i \ln \relax (5)^{2}+6 i x \ln \relax (5)-3 \pi x +9 i\right ) \left (-4 i \pi \ln \relax (5) x^{2}+\pi ^{2} x^{2}-4 x^{2} \ln \relax (5)^{2}+4 i \pi \ln \relax (5)-6 i \pi x -\pi ^{2}+4 \ln \relax (5)^{2}-12 x \ln \relax (5)-9\right )}{12 \left (-2 i x \ln \relax (5)+\pi x -2 i \ln \relax (5)+\pi -3 i\right ) \left (-2 i x \ln \relax (5)+\pi x +2 i \ln \relax (5)-\pi -3 i\right ) \left (-4 i \pi \ln \relax (5) x^{2}+\pi ^{2} x^{2}-4 x^{2} \ln \relax (5)^{2}-6 i \pi x -12 x \ln \relax (5)-9\right )}\) | \(182\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 28, normalized size = 1.22 \begin {gather*} \frac {1}{4} \, x + \frac {i \, \pi + 2 \, \log \relax (5)}{4 \, {\left ({\left (i \, \pi + 2 \, \log \relax (5)\right )} x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.59, size = 43, normalized size = 1.87 \begin {gather*} \frac {-\Pi +x\,3{}\mathrm {i}+\ln \relax (5)\,2{}\mathrm {i}-\Pi \,x^2+x^2\,\ln \relax (5)\,2{}\mathrm {i}}{4\,\left (-\Pi \,x+x\,\ln \relax (5)\,2{}\mathrm {i}+3{}\mathrm {i}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.53, size = 24, normalized size = 1.04 \begin {gather*} \frac {x}{4} + \frac {2 \log {\relax (5 )} + i \pi }{x \left (8 \log {\relax (5 )} + 4 i \pi \right ) + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________