Optimal. Leaf size=28 \[ e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 8.11, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {36+12 \log \left (\frac {4}{x}\right )}{x \log \left (e^{-e^4 x} x\right )}} \left (-36+36 e^4 x+\left (-12+12 e^4 x\right ) \log \left (\frac {4}{x}\right )+\left (-48-12 \log \left (\frac {4}{x}\right )\right ) \log \left (e^{-e^4 x} x\right )\right )}{x^2 \log ^2\left (e^{-e^4 x} x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \left (-36+36 e^4 x+\left (-12+12 e^4 x\right ) \log \left (\frac {4}{x}\right )+\left (-48-12 \log \left (\frac {4}{x}\right )\right ) \log \left (e^{-e^4 x} x\right )\right )}{x^2 \log ^2\left (e^{-e^4 x} x\right )} \, dx\\ &=\int \left (\frac {12 e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \left (-1+e^4 x\right ) \left (3+\log \left (\frac {4}{x}\right )\right )}{x^2 \log ^2\left (e^{-e^4 x} x\right )}-\frac {12 e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \left (4+\log \left (\frac {4}{x}\right )\right )}{x^2 \log \left (e^{-e^4 x} x\right )}\right ) \, dx\\ &=12 \int \frac {e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \left (-1+e^4 x\right ) \left (3+\log \left (\frac {4}{x}\right )\right )}{x^2 \log ^2\left (e^{-e^4 x} x\right )} \, dx-12 \int \frac {e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \left (4+\log \left (\frac {4}{x}\right )\right )}{x^2 \log \left (e^{-e^4 x} x\right )} \, dx\\ &=12 \int \left (\frac {e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \left (-3-\log \left (\frac {4}{x}\right )\right )}{x^2 \log ^2\left (e^{-e^4 x} x\right )}+\frac {e^{4+\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log ^2\left (e^{-e^4 x} x\right )}\right ) \, dx-12 \int \left (\frac {4 e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}}}{x^2 \log \left (e^{-e^4 x} x\right )}+\frac {e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \log \left (\frac {4}{x}\right )}{x^2 \log \left (e^{-e^4 x} x\right )}\right ) \, dx\\ &=12 \int \frac {e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \left (-3-\log \left (\frac {4}{x}\right )\right )}{x^2 \log ^2\left (e^{-e^4 x} x\right )} \, dx+12 \int \frac {e^{4+\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log ^2\left (e^{-e^4 x} x\right )} \, dx-12 \int \frac {e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \log \left (\frac {4}{x}\right )}{x^2 \log \left (e^{-e^4 x} x\right )} \, dx-48 \int \frac {e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}}}{x^2 \log \left (e^{-e^4 x} x\right )} \, dx\\ &=12 \int \left (-\frac {3 e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}}}{x^2 \log ^2\left (e^{-e^4 x} x\right )}-\frac {e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \log \left (\frac {4}{x}\right )}{x^2 \log ^2\left (e^{-e^4 x} x\right )}\right ) \, dx+12 \int \left (\frac {3 e^{4+\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}}}{x \log ^2\left (e^{-e^4 x} x\right )}+\frac {e^{4+\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \log \left (\frac {4}{x}\right )}{x \log ^2\left (e^{-e^4 x} x\right )}\right ) \, dx-12 \int \frac {e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \log \left (\frac {4}{x}\right )}{x^2 \log \left (e^{-e^4 x} x\right )} \, dx-48 \int \frac {e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}}}{x^2 \log \left (e^{-e^4 x} x\right )} \, dx\\ &=-\left (12 \int \frac {e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \log \left (\frac {4}{x}\right )}{x^2 \log ^2\left (e^{-e^4 x} x\right )} \, dx\right )+12 \int \frac {e^{4+\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \log \left (\frac {4}{x}\right )}{x \log ^2\left (e^{-e^4 x} x\right )} \, dx-12 \int \frac {e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \log \left (\frac {4}{x}\right )}{x^2 \log \left (e^{-e^4 x} x\right )} \, dx-36 \int \frac {e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}}}{x^2 \log ^2\left (e^{-e^4 x} x\right )} \, dx+36 \int \frac {e^{4+\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}}}{x \log ^2\left (e^{-e^4 x} x\right )} \, dx-48 \int \frac {e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}}}{x^2 \log \left (e^{-e^4 x} x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 28, normalized size = 1.00 \begin {gather*} e^{\frac {12 \left (3+\log \left (\frac {4}{x}\right )\right )}{x \log \left (e^{-e^4 x} x\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 33, normalized size = 1.18 \begin {gather*} e^{\left (-\frac {12 \, {\left (\log \left (\frac {4}{x}\right ) + 3\right )}}{x^{2} e^{4} - 2 \, x \log \relax (2) + x \log \left (\frac {4}{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.29, size = 40, normalized size = 1.43 \begin {gather*} e^{\left (\frac {12 \, \log \left (\frac {4}{x}\right )}{x \log \left (x e^{\left (-x e^{4}\right )}\right )} + \frac {36}{x \log \left (x e^{\left (-x e^{4}\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.77, size = 128, normalized size = 4.57
method | result | size |
risch | \({\mathrm e}^{\frac {48 \ln \relax (2)-24 \ln \relax (x )+72}{x \left (-i \mathrm {csgn}\left (i x \,{\mathrm e}^{-x \,{\mathrm e}^{4}}\right )^{3} \pi +i \mathrm {csgn}\left (i x \,{\mathrm e}^{-x \,{\mathrm e}^{4}}\right )^{2} \mathrm {csgn}\left (i x \right ) \pi +i \mathrm {csgn}\left (i x \,{\mathrm e}^{-x \,{\mathrm e}^{4}}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{-x \,{\mathrm e}^{4}}\right ) \pi -i \mathrm {csgn}\left (i x \,{\mathrm e}^{-x \,{\mathrm e}^{4}}\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-x \,{\mathrm e}^{4}}\right ) \pi +2 \ln \relax (x )-2 \ln \left ({\mathrm e}^{x \,{\mathrm e}^{4}}\right )\right )}}\) | \(128\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.86, size = 82, normalized size = 2.93 \begin {gather*} e^{\left (-\frac {24 \, e^{4} \log \relax (2)}{x e^{4} \log \relax (x) - \log \relax (x)^{2}} - \frac {36 \, e^{4}}{x e^{4} \log \relax (x) - \log \relax (x)^{2}} + \frac {12 \, e^{4}}{x e^{4} - \log \relax (x)} - \frac {12}{x} + \frac {24 \, \log \relax (2)}{x \log \relax (x)} + \frac {36}{x \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.66, size = 60, normalized size = 2.14 \begin {gather*} \frac {{\mathrm {e}}^{-\frac {36}{x^2\,{\mathrm {e}}^4-x\,\ln \relax (x)}}}{2^{\frac {24}{x^2\,{\mathrm {e}}^4-x\,\ln \relax (x)}}\,{\left (\frac {1}{x}\right )}^{\frac {12}{x^2\,{\mathrm {e}}^4-x\,\ln \relax (x)}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________