Optimal. Leaf size=31 \[ e^{\frac {1}{4} (1-2 x) \left (\frac {\log (2)}{4}+\log \left (5+\frac {x}{-4+x}+x^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 9.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {1}{16} \left ((1-2 x) \log (2)+(4-8 x) \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \left (-8+80 x-160 x^2+68 x^3-8 x^4+\left (-80+44 x-22 x^2+8 x^3-x^4\right ) \log (2)+\left (-320+176 x-88 x^2+32 x^3-4 x^4\right ) \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )}{640-352 x+176 x^2-64 x^3+8 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \left (-8+80 x-160 x^2+68 x^3-8 x^4+\left (-80+44 x-22 x^2+8 x^3-x^4\right ) \log (2)+\left (-320+176 x-88 x^2+32 x^3-4 x^4\right ) \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )}{640-352 x+176 x^2-64 x^3+8 x^4} \, dx\\ &=\int \left (\frac {17 \exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) x^3}{2 (-4+x) \left (-20+6 x-4 x^2+x^3\right )}+\frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right )}{-80+44 x-22 x^2+8 x^3-x^4}+\frac {10 \exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) x}{80-44 x+22 x^2-8 x^3+x^4}-\frac {20 \exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) x^2}{80-44 x+22 x^2-8 x^3+x^4}-\frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) x^4}{80-44 x+22 x^2-8 x^3+x^4}-\frac {1}{8} \exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \log (2)-\frac {1}{2} \exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right ) \, dx\\ &=-\left (\frac {1}{2} \int \exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right ) \, dx\right )+\frac {17}{2} \int \frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) x^3}{(-4+x) \left (-20+6 x-4 x^2+x^3\right )} \, dx+10 \int \frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) x}{80-44 x+22 x^2-8 x^3+x^4} \, dx-20 \int \frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) x^2}{80-44 x+22 x^2-8 x^3+x^4} \, dx-\frac {1}{8} \log (2) \int \exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \, dx+\int \frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right )}{-80+44 x-22 x^2+8 x^3-x^4} \, dx-\int \frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) x^4}{80-44 x+22 x^2-8 x^3+x^4} \, dx\\ &=-\left (\frac {1}{2} \int \exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right ) \, dx\right )+\frac {17}{2} \int \left (\frac {16 \exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right )}{-4+x}+\frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \left (-80+4 x-15 x^2\right )}{-20+6 x-4 x^2+x^3}\right ) \, dx+10 \int \left (\frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right )}{-4+x}+\frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \left (-5-x^2\right )}{-20+6 x-4 x^2+x^3}\right ) \, dx-20 \int \left (\frac {4 \exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right )}{-4+x}+\frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \left (-20+x-4 x^2\right )}{-20+6 x-4 x^2+x^3}\right ) \, dx-\frac {1}{8} \log (2) \int \exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \, dx+\int \left (-\frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right )}{4 (-4+x)}+\frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \left (6+x^2\right )}{4 \left (-20+6 x-4 x^2+x^3\right )}\right ) \, dx-\int \left (\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right )-\frac {2 \exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \left (40-22 x+11 x^2-4 x^3\right )}{80-44 x+22 x^2-8 x^3+x^4}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right )}{-4+x} \, dx\right )+\frac {1}{4} \int \frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \left (6+x^2\right )}{-20+6 x-4 x^2+x^3} \, dx-\frac {1}{2} \int \exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right ) \, dx+2 \int \frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \left (40-22 x+11 x^2-4 x^3\right )}{80-44 x+22 x^2-8 x^3+x^4} \, dx+\frac {17}{2} \int \frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \left (-80+4 x-15 x^2\right )}{-20+6 x-4 x^2+x^3} \, dx+10 \int \frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right )}{-4+x} \, dx+10 \int \frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \left (-5-x^2\right )}{-20+6 x-4 x^2+x^3} \, dx-20 \int \frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \left (-20+x-4 x^2\right )}{-20+6 x-4 x^2+x^3} \, dx-80 \int \frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right )}{-4+x} \, dx+136 \int \frac {\exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right )}{-4+x} \, dx-\frac {1}{8} \log (2) \int \exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \, dx-\int \exp \left (-\frac {1}{16} (-1+2 x) \left (\log (2)+4 \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.05, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {1}{16} \left ((1-2 x) \log (2)+(4-8 x) \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )} \left (-8+80 x-160 x^2+68 x^3-8 x^4+\left (-80+44 x-22 x^2+8 x^3-x^4\right ) \log (2)+\left (-320+176 x-88 x^2+32 x^3-4 x^4\right ) \log \left (\frac {-20+6 x-4 x^2+x^3}{-4+x}\right )\right )}{640-352 x+176 x^2-64 x^3+8 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 38, normalized size = 1.23 \begin {gather*} e^{\left (-\frac {1}{16} \, {\left (2 \, x - 1\right )} \log \relax (2) - \frac {1}{4} \, {\left (2 \, x - 1\right )} \log \left (\frac {x^{3} - 4 \, x^{2} + 6 \, x - 20}{x - 4}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.95, size = 88, normalized size = 2.84 \begin {gather*} e^{\left (-\frac {1}{8} \, x \log \relax (2) - \frac {1}{2} \, x \log \left (\frac {x^{3}}{x - 4} - \frac {4 \, x^{2}}{x - 4} + \frac {6 \, x}{x - 4} - \frac {20}{x - 4}\right ) + \frac {1}{16} \, \log \relax (2) + \frac {1}{4} \, \log \left (\frac {x^{3}}{x - 4} - \frac {4 \, x^{2}}{x - 4} + \frac {6 \, x}{x - 4} - \frac {20}{x - 4}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 34, normalized size = 1.10
method | result | size |
risch | \(\left (\frac {x^{3}-4 x^{2}+6 x -20}{x -4}\right )^{-\frac {x}{2}+\frac {1}{4}} 2^{-\frac {x}{8}+\frac {1}{16}}\) | \(34\) |
norman | \({\mathrm e}^{\frac {\left (-8 x +4\right ) \ln \left (\frac {x^{3}-4 x^{2}+6 x -20}{x -4}\right )}{16}+\frac {\left (1-2 x \right ) \ln \relax (2)}{16}}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.86, size = 55, normalized size = 1.77 \begin {gather*} \frac {2^{\frac {1}{16}} {\left (x^{3} - 4 \, x^{2} + 6 \, x - 20\right )}^{\frac {1}{4}} e^{\left (-\frac {1}{8} \, x \log \relax (2) - \frac {1}{2} \, x \log \left (x^{3} - 4 \, x^{2} + 6 \, x - 20\right ) + \frac {1}{2} \, x \log \left (x - 4\right )\right )}}{{\left (x - 4\right )}^{\frac {1}{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.67, size = 70, normalized size = 2.26 \begin {gather*} \frac {2^{\frac {1}{16}-\frac {x}{8}}\,{\left (\frac {6\,x}{x-4}-\frac {20}{x-4}-\frac {4\,x^2}{x-4}+\frac {x^3}{x-4}\right )}^{1/4}}{{\left (\frac {x^3-4\,x^2+6\,x-20}{x-4}\right )}^{x/2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.09, size = 36, normalized size = 1.16 \begin {gather*} e^{\left (\frac {1}{16} - \frac {x}{8}\right ) \log {\relax (2 )} + \left (\frac {1}{4} - \frac {x}{2}\right ) \log {\left (\frac {x^{3} - 4 x^{2} + 6 x - 20}{x - 4} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________