Optimal. Leaf size=20 \[ \frac {5 (1+x)}{x \left (-2+x-e^x \log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10-10 x-5 x^2+e^x (5+5 x)+e^x \left (5+5 x+5 x^2\right ) \log (x)}{4 x^2-4 x^3+x^4+e^x \left (4 x^2-2 x^3\right ) \log (x)+e^{2 x} x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (2-2 x-x^2+e^x (1+x)+e^x \left (1+x+x^2\right ) \log (x)\right )}{x^2 \left (2-x+e^x \log (x)\right )^2} \, dx\\ &=5 \int \frac {2-2 x-x^2+e^x (1+x)+e^x \left (1+x+x^2\right ) \log (x)}{x^2 \left (2-x+e^x \log (x)\right )^2} \, dx\\ &=5 \int \left (\frac {(1+x) \left (-2+x-3 x \log (x)+x^2 \log (x)\right )}{x^2 \log (x) \left (-2+x-e^x \log (x)\right )^2}-\frac {1+x+\log (x)+x \log (x)+x^2 \log (x)}{x^2 \log (x) \left (-2+x-e^x \log (x)\right )}\right ) \, dx\\ &=5 \int \frac {(1+x) \left (-2+x-3 x \log (x)+x^2 \log (x)\right )}{x^2 \log (x) \left (-2+x-e^x \log (x)\right )^2} \, dx-5 \int \frac {1+x+\log (x)+x \log (x)+x^2 \log (x)}{x^2 \log (x) \left (-2+x-e^x \log (x)\right )} \, dx\\ &=-\left (5 \int \left (\frac {1}{-2+x-e^x \log (x)}+\frac {1}{x^2 \left (-2+x-e^x \log (x)\right )}+\frac {1}{x \left (-2+x-e^x \log (x)\right )}+\frac {1}{x^2 \log (x) \left (-2+x-e^x \log (x)\right )}+\frac {1}{x \log (x) \left (-2+x-e^x \log (x)\right )}\right ) \, dx\right )+5 \int \left (\frac {-2+x-3 x \log (x)+x^2 \log (x)}{x^2 \log (x) \left (-2+x-e^x \log (x)\right )^2}+\frac {-2+x-3 x \log (x)+x^2 \log (x)}{x \log (x) \left (-2+x-e^x \log (x)\right )^2}\right ) \, dx\\ &=-\left (5 \int \frac {1}{-2+x-e^x \log (x)} \, dx\right )-5 \int \frac {1}{x^2 \left (-2+x-e^x \log (x)\right )} \, dx-5 \int \frac {1}{x \left (-2+x-e^x \log (x)\right )} \, dx-5 \int \frac {1}{x^2 \log (x) \left (-2+x-e^x \log (x)\right )} \, dx-5 \int \frac {1}{x \log (x) \left (-2+x-e^x \log (x)\right )} \, dx+5 \int \frac {-2+x-3 x \log (x)+x^2 \log (x)}{x^2 \log (x) \left (-2+x-e^x \log (x)\right )^2} \, dx+5 \int \frac {-2+x-3 x \log (x)+x^2 \log (x)}{x \log (x) \left (-2+x-e^x \log (x)\right )^2} \, dx\\ &=-\left (5 \int \frac {1}{-2+x-e^x \log (x)} \, dx\right )-5 \int \frac {1}{x^2 \left (-2+x-e^x \log (x)\right )} \, dx-5 \int \frac {1}{x \left (-2+x-e^x \log (x)\right )} \, dx-5 \int \frac {1}{x^2 \log (x) \left (-2+x-e^x \log (x)\right )} \, dx-5 \int \frac {1}{x \log (x) \left (-2+x-e^x \log (x)\right )} \, dx+5 \int \left (\frac {1}{\left (-2+x-e^x \log (x)\right )^2}-\frac {3}{x \left (-2+x-e^x \log (x)\right )^2}-\frac {2}{x^2 \log (x) \left (-2+x-e^x \log (x)\right )^2}+\frac {1}{x \log (x) \left (-2+x-e^x \log (x)\right )^2}\right ) \, dx+5 \int \left (-\frac {3}{\left (-2+x-e^x \log (x)\right )^2}+\frac {x}{\left (-2+x-e^x \log (x)\right )^2}-\frac {2}{x \log (x) \left (-2+x-e^x \log (x)\right )^2}+\frac {1}{\log (x) \left (2-x+e^x \log (x)\right )^2}\right ) \, dx\\ &=5 \int \frac {1}{\left (-2+x-e^x \log (x)\right )^2} \, dx+5 \int \frac {x}{\left (-2+x-e^x \log (x)\right )^2} \, dx+5 \int \frac {1}{x \log (x) \left (-2+x-e^x \log (x)\right )^2} \, dx-5 \int \frac {1}{-2+x-e^x \log (x)} \, dx-5 \int \frac {1}{x^2 \left (-2+x-e^x \log (x)\right )} \, dx-5 \int \frac {1}{x \left (-2+x-e^x \log (x)\right )} \, dx-5 \int \frac {1}{x^2 \log (x) \left (-2+x-e^x \log (x)\right )} \, dx-5 \int \frac {1}{x \log (x) \left (-2+x-e^x \log (x)\right )} \, dx+5 \int \frac {1}{\log (x) \left (2-x+e^x \log (x)\right )^2} \, dx-10 \int \frac {1}{x^2 \log (x) \left (-2+x-e^x \log (x)\right )^2} \, dx-10 \int \frac {1}{x \log (x) \left (-2+x-e^x \log (x)\right )^2} \, dx-15 \int \frac {1}{\left (-2+x-e^x \log (x)\right )^2} \, dx-15 \int \frac {1}{x \left (-2+x-e^x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.60, size = 20, normalized size = 1.00 \begin {gather*} \frac {5 (1+x)}{x \left (-2+x-e^x \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 22, normalized size = 1.10 \begin {gather*} -\frac {5 \, {\left (x + 1\right )}}{x e^{x} \log \relax (x) - x^{2} + 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 22, normalized size = 1.10 \begin {gather*} -\frac {5 \, {\left (x + 1\right )}}{x e^{x} \log \relax (x) - x^{2} + 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 1.00
method | result | size |
risch | \(\frac {5 x +5}{\left (x -2-{\mathrm e}^{x} \ln \relax (x )\right ) x}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 22, normalized size = 1.10 \begin {gather*} -\frac {5 \, {\left (x + 1\right )}}{x e^{x} \log \relax (x) - x^{2} + 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.16, size = 68, normalized size = 3.40 \begin {gather*} -\frac {5\,{\mathrm {e}}^{2\,x}+5\,x\,{\mathrm {e}}^{2\,x}-{\mathrm {e}}^x\,\left (-5\,x^3+10\,x^2+15\,x\right )}{\left ({\mathrm {e}}^x\,\ln \relax (x)-x+2\right )\,\left (x\,{\mathrm {e}}^{2\,x}-3\,x^2\,{\mathrm {e}}^x+x^3\,{\mathrm {e}}^x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 20, normalized size = 1.00 \begin {gather*} \frac {- 5 x - 5}{- x^{2} + x e^{x} \log {\relax (x )} + 2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________