Optimal. Leaf size=21 \[ e^{x^{-8-2 x+2 \log \left (3 e^x \log ^2(x)\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 3.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \exp \left (\exp \left (2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2+2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) \left (-4 x-2 x^2+2 x \log \left (3 e^x \log ^2(x)\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 2 \exp \left (\exp \left (2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2+2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x \left (-2-x+\log \left (3 e^x \log ^2(x)\right )\right ) \, dx\\ &=2 \int \exp \left (\exp \left (2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2+2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x \left (-2-x+\log \left (3 e^x \log ^2(x)\right )\right ) \, dx\\ &=2 \int \left (-\exp \left (\exp \left (2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2+2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x (2+x)+\exp \left (\exp \left (2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2+2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x \log \left (3 e^x \log ^2(x)\right )\right ) \, dx\\ &=-\left (2 \int \exp \left (\exp \left (2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2+2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x (2+x) \, dx\right )+2 \int \exp \left (\exp \left (2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2+2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x \log \left (3 e^x \log ^2(x)\right ) \, dx\\ &=-\left (2 \int \left (2 \exp \left (\exp \left (2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2+2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x+\exp \left (\exp \left (2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2+2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2\right ) \, dx\right )+2 \int \exp \left (\exp \left (2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2+2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x \log \left (3 e^x \log ^2(x)\right ) \, dx\\ &=-\left (2 \int \exp \left (\exp \left (2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2+2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2 \, dx\right )+2 \int \exp \left (\exp \left (2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2+2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x \log \left (3 e^x \log ^2(x)\right ) \, dx-4 \int \exp \left (\exp \left (2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2+2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x \, dx\\ &=-\left (2 \int \exp \left (x^{-8-2 x+2 \log \left (3 e^x \log ^2(x)\right )}+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^{-8-2 x} \, dx\right )+2 \int \exp \left (\exp \left (2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2+2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x \log \left (3 e^x \log ^2(x)\right ) \, dx-4 \int \exp \left (\exp \left (2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x^2+2 (-5-x) \log (x)+2 \log (x) \log \left (3 e^x \log ^2(x)\right )\right ) x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.01, size = 21, normalized size = 1.00 \begin {gather*} e^{x^{-8-2 x+2 \log \left (3 e^x \log ^2(x)\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 27, normalized size = 1.29 \begin {gather*} e^{\left (x^{2} e^{\left (-2 \, {\left (x + 5\right )} \log \relax (x) + 2 \, \log \left (3 \, e^{x} \log \relax (x)^{2}\right ) \log \relax (x)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.36, size = 104, normalized size = 4.95
method | result | size |
risch | \({\mathrm e}^{x^{2} x^{-i \mathrm {csgn}\left (i \ln \relax (x )^{2}\right ) \pi +2 i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right )-i \pi \,\mathrm {csgn}\left (i \ln \relax (x )^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x} \ln \relax (x )^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-i \mathrm {csgn}\left (i {\mathrm e}^{x} \ln \relax (x )^{2}\right ) \pi +4 \ln \left (\ln \relax (x )\right )+2 \ln \left (3 \,{\mathrm e}^{x}\right )+i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right )} x^{-2 x -10}}\) | \(104\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.13, size = 20, normalized size = 0.95 \begin {gather*} e^{\left (\frac {e^{\left (2 \, \log \relax (3) \log \relax (x) + 4 \, \log \relax (x) \log \left (\log \relax (x)\right )\right )}}{x^{8}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.23, size = 20, normalized size = 0.95 \begin {gather*} {\mathrm {e}}^{\frac {x^{2\,\ln \relax (3)}\,x^{2\,\ln \left ({\ln \relax (x)}^2\right )}}{x^8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________