3.17.81 10546875ex/63125000x3+1875000x4405000x5+37800x61296x7+ex/8(84375000+9703125x+1265625x2)+ex/12(84375000x+26859375x21586250x350625x4)+ex/24(28125000x2+13109375x31884375x4+80325x5+675x6)781250dx

Optimal. Leaf size=24 3(3ex/24+x3x225)4

________________________________________________________________________________________

Rubi [B]  time = 0.51, antiderivative size = 161, normalized size of antiderivative = 6.71, number of steps used = 54, number of rules used = 4, integrand size = 118, number of rulesintegrand size = 0.034, Rules used = {12, 2194, 2196, 2176} 81x8390625+108x715625+324ex/24x61562554x6625324625ex/24x5+12x525+10825ex/24x4486625ex/12x4x412ex/24x3+32425ex/12x354ex/12x2+32425ex/8x2108ex/8x81ex/6

Antiderivative was successfully verified.

[In]

Int[(-10546875*E^(x/6) - 3125000*x^3 + 1875000*x^4 - 405000*x^5 + 37800*x^6 - 1296*x^7 + E^(x/8)*(-84375000 +
9703125*x + 1265625*x^2) + E^(x/12)*(-84375000*x + 26859375*x^2 - 1586250*x^3 - 50625*x^4) + E^(x/24)*(-281250
00*x^2 + 13109375*x^3 - 1884375*x^4 + 80325*x^5 + 675*x^6))/781250,x]

[Out]

-81*E^(x/6) - 108*E^(x/8)*x - 54*E^(x/12)*x^2 + (324*E^(x/8)*x^2)/25 - 12*E^(x/24)*x^3 + (324*E^(x/12)*x^3)/25
 - x^4 + (108*E^(x/24)*x^4)/25 - (486*E^(x/12)*x^4)/625 + (12*x^5)/25 - (324*E^(x/24)*x^5)/625 - (54*x^6)/625
+ (324*E^(x/24)*x^6)/15625 + (108*x^7)/15625 - (81*x^8)/390625

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2196

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !$UseGamma === True

Rubi steps

integral=(10546875ex/63125000x3+1875000x4405000x5+37800x61296x7+ex/8(84375000+9703125x+1265625x2)+ex/12(84375000x+26859375x21586250x350625x4)+ex/24(28125000x2+13109375x31884375x4+80325x5+675x6))dx781250=x4+12x52554x6625+108x71562581x8390625+ex/8(84375000+9703125x+1265625x2)dx781250+ex/12(84375000x+26859375x21586250x350625x4)dx781250+ex/24(28125000x2+13109375x31884375x4+80325x5+675x6)dx781250272ex/6dx=81ex/6x4+12x52554x6625+108x71562581x8390625+(84375000ex/8+9703125ex/8x+1265625ex/8x2)dx781250+(84375000ex/12x+26859375ex/12x21586250ex/12x350625ex/12x4)dx781250+(28125000ex/24x2+13109375ex/24x31884375ex/24x4+80325ex/24x5+675ex/24x6)dx781250=81ex/6x4+12x52554x6625+108x71562581x8390625+27ex/24x6dx3125081ex/12x4dx1250+3213ex/24x5dx31250+8150ex/8x2dx1269625ex/12x3dx603250ex/24x4dx+62150ex/8xdx+83950ex/24x3dx+171950ex/12x2dx36ex/24x2dx108ex/8dx108ex/12xdx=864ex/881ex/61296ex/12x+248425ex/8x864ex/24x2+1031425ex/12x2+32425ex/8x2+1006825ex/24x315228625ex/12x3x47236125ex/24x4486625ex/12x4+12x525+38556ex/24x51562554x6625+324ex/24x615625+108x71562581x83906251944ex/24x5dx15625+1944625ex/12x3dx38556ex/24x4dx312564825ex/8xdx+45684625ex/12x2dx248425ex/8dx+28944125ex/24x3dx2062825ex/12xdx3020425ex/24x2dx+1296ex/12dx+1728ex/24xdx=15552ex/1241472ex/82581ex/6+41472ex/24x27993625ex/12x108ex/8x74649625ex/24x2+806058625ex/12x2+32425ex/8x2+744996125ex/24x3+32425ex/12x3x41106244ex/24x43125486625ex/12x4+12x525324625ex/24x554x6625+324ex/24x615625+108x71562581x8390625+46656ex/24x4dx312569984625ex/12x2dx+518425ex/8dx+3701376ex/24x3dx31251096416625ex/12xdx+24753625ex/12dx2083968125ex/24x2dx41472ex/24dx+144979225ex/24xdx=995328ex/24+3359232ex/122581ex/6+3583180825ex/24x20155392625ex/12x108ex/8x53747712125ex/24x254ex/12x2+32425ex/8x2+107457924ex/24x33125+32425ex/12x3x4+10825ex/24x4486625ex/12x4+12x525324625ex/24x554x6625+324ex/24x615625+108x71562581x83906254478976ex/24x3dx3125+1679616625ex/12xdx+13156992625ex/12dx266499072ex/24x2dx3125+100030464125ex/24xdx3479500825ex/24dx=859963392ex/2425+241864704ex/1262581ex/6+2579890176125ex/24x108ex/8x7739670528ex/24x2312554ex/12x2+32425ex/8x212ex/24x3+32425ex/12x3x4+10825ex/24x4486625ex/12x4+12x525324625ex/24x554x6625+324ex/24x615625+108x71562581x839062520155392625ex/12dx+322486272ex/24x2dx3125+12791955456ex/24xdx31252400731136125ex/24dx=61917364224ex/2412581ex/6+371504185344ex/24x3125108ex/8x54ex/12x2+32425ex/8x212ex/24x3+32425ex/12x3x4+10825ex/24x4486625ex/12x4+12x525324625ex/24x554x6625+324ex/24x615625+108x71562581x839062515479341056ex/24xdx3125307006930944ex/24dx3125=8916100448256ex/24312581ex/6108ex/8x54ex/12x2+32425ex/8x212ex/24x3+32425ex/12x3x4+10825ex/24x4486625ex/12x4+12x525324625ex/24x554x6625+324ex/24x615625+108x71562581x8390625+371504185344ex/24dx3125=81ex/6108ex/8x54ex/12x2+32425ex/8x212ex/24x3+32425ex/12x3x4+10825ex/24x4486625ex/12x4+12x525324625ex/24x554x6625+324ex/24x615625+108x71562581x8390625

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 23, normalized size = 0.96 (75ex/24+(253x)x)4390625

Antiderivative was successfully verified.

[In]

Integrate[(-10546875*E^(x/6) - 3125000*x^3 + 1875000*x^4 - 405000*x^5 + 37800*x^6 - 1296*x^7 + E^(x/8)*(-84375
000 + 9703125*x + 1265625*x^2) + E^(x/12)*(-84375000*x + 26859375*x^2 - 1586250*x^3 - 50625*x^4) + E^(x/24)*(-
28125000*x^2 + 13109375*x^3 - 1884375*x^4 + 80325*x^5 + 675*x^6))/781250,x]

[Out]

-1/390625*(75*E^(x/24) + (25 - 3*x)*x)^4

________________________________________________________________________________________

fricas [B]  time = 0.65, size = 96, normalized size = 4.00 81390625x8+10815625x754625x6+1225x5x4+10825(3x225x)e(18x)54625(9x4150x3+625x2)e(112x)+1215625(27x6675x5+5625x415625x3)e(124x)81e(16x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-27/2*exp(1/24*x)^4+1/781250*(1265625*x^2+9703125*x-84375000)*exp(1/24*x)^3+1/781250*(-50625*x^4-158
6250*x^3+26859375*x^2-84375000*x)*exp(1/24*x)^2+1/781250*(675*x^6+80325*x^5-1884375*x^4+13109375*x^3-28125000*
x^2)*exp(1/24*x)-648/390625*x^7+756/15625*x^6-324/625*x^5+12/5*x^4-4*x^3,x, algorithm="fricas")

[Out]

-81/390625*x^8 + 108/15625*x^7 - 54/625*x^6 + 12/25*x^5 - x^4 + 108/25*(3*x^2 - 25*x)*e^(1/8*x) - 54/625*(9*x^
4 - 150*x^3 + 625*x^2)*e^(1/12*x) + 12/15625*(27*x^6 - 675*x^5 + 5625*x^4 - 15625*x^3)*e^(1/24*x) - 81*e^(1/6*
x)

________________________________________________________________________________________

giac [B]  time = 1.45, size = 96, normalized size = 4.00 81390625x8+10815625x754625x6+1225x5x4+10825(3x225x)e(18x)54625(9x4150x3+625x2)e(112x)+1215625(27x6675x5+5625x415625x3)e(124x)81e(16x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-27/2*exp(1/24*x)^4+1/781250*(1265625*x^2+9703125*x-84375000)*exp(1/24*x)^3+1/781250*(-50625*x^4-158
6250*x^3+26859375*x^2-84375000*x)*exp(1/24*x)^2+1/781250*(675*x^6+80325*x^5-1884375*x^4+13109375*x^3-28125000*
x^2)*exp(1/24*x)-648/390625*x^7+756/15625*x^6-324/625*x^5+12/5*x^4-4*x^3,x, algorithm="giac")

[Out]

-81/390625*x^8 + 108/15625*x^7 - 54/625*x^6 + 12/25*x^5 - x^4 + 108/25*(3*x^2 - 25*x)*e^(1/8*x) - 54/625*(9*x^
4 - 150*x^3 + 625*x^2)*e^(1/12*x) + 12/15625*(27*x^6 - 675*x^5 + 5625*x^4 - 15625*x^3)*e^(1/24*x) - 81*e^(1/6*
x)

________________________________________________________________________________________

maple [B]  time = 0.09, size = 97, normalized size = 4.04




method result size



risch 81ex6+(10125000x284375000x)ex8781250+(607500x4+10125000x342187500x2)ex12781250+(16200x6405000x5+3375000x49375000x3)ex2478125081x8390625+108x71562554x6625+12x525x4 97
derivativedivides x4+12x52554x6625+108x71562581x839062581ex6108ex8x+324ex8x22554ex12x2+324ex12x325486ex12x462512ex24x3+108ex24x425324ex24x5625+324ex24x615625 124
default x4+12x52554x6625+108x71562581x839062581ex6108ex8x+324ex8x22554ex12x2+324ex12x325486ex12x462512ex24x3+108ex24x425324ex24x5625+324ex24x615625 124



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-27/2*exp(1/24*x)^4+1/781250*(1265625*x^2+9703125*x-84375000)*exp(1/24*x)^3+1/781250*(-50625*x^4-1586250*x
^3+26859375*x^2-84375000*x)*exp(1/24*x)^2+1/781250*(675*x^6+80325*x^5-1884375*x^4+13109375*x^3-28125000*x^2)*e
xp(1/24*x)-648/390625*x^7+756/15625*x^6-324/625*x^5+12/5*x^4-4*x^3,x,method=_RETURNVERBOSE)

[Out]

-81*exp(1/6*x)+1/781250*(10125000*x^2-84375000*x)*exp(1/8*x)+1/781250*(-607500*x^4+10125000*x^3-42187500*x^2)*
exp(1/12*x)+1/781250*(16200*x^6-405000*x^5+3375000*x^4-9375000*x^3)*exp(1/24*x)-81/390625*x^8+108/15625*x^7-54
/625*x^6+12/25*x^5-x^4

________________________________________________________________________________________

maxima [B]  time = 0.46, size = 96, normalized size = 4.00 81390625x8+10815625x754625x6+1225x5x4+10825(3x225x)e(18x)54625(9x4150x3+625x2)e(112x)+1215625(27x6675x5+5625x415625x3)e(124x)81e(16x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-27/2*exp(1/24*x)^4+1/781250*(1265625*x^2+9703125*x-84375000)*exp(1/24*x)^3+1/781250*(-50625*x^4-158
6250*x^3+26859375*x^2-84375000*x)*exp(1/24*x)^2+1/781250*(675*x^6+80325*x^5-1884375*x^4+13109375*x^3-28125000*
x^2)*exp(1/24*x)-648/390625*x^7+756/15625*x^6-324/625*x^5+12/5*x^4-4*x^3,x, algorithm="maxima")

[Out]

-81/390625*x^8 + 108/15625*x^7 - 54/625*x^6 + 12/25*x^5 - x^4 + 108/25*(3*x^2 - 25*x)*e^(1/8*x) - 54/625*(9*x^
4 - 150*x^3 + 625*x^2)*e^(1/12*x) + 12/15625*(27*x^6 - 675*x^5 + 5625*x^4 - 15625*x^3)*e^(1/24*x) - 81*e^(1/6*
x)

________________________________________________________________________________________

mupad [B]  time = 1.18, size = 19, normalized size = 0.79 (25x+75ex/243x2)4390625

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x/8)*(9703125*x + 1265625*x^2 - 84375000))/781250 - (27*exp(x/6))/2 + (exp(x/24)*(13109375*x^3 - 2812
5000*x^2 - 1884375*x^4 + 80325*x^5 + 675*x^6))/781250 - (exp(x/12)*(84375000*x - 26859375*x^2 + 1586250*x^3 +
50625*x^4))/781250 - 4*x^3 + (12*x^4)/5 - (324*x^5)/625 + (756*x^6)/15625 - (648*x^7)/390625,x)

[Out]

-(25*x + 75*exp(x/24) - 3*x^2)^4/390625

________________________________________________________________________________________

sympy [B]  time = 0.26, size = 100, normalized size = 4.17 81x8390625+108x71562554x6625+12x525x4+(3164062500x226367187500x)ex8244140625+(189843750x4+3164062500x313183593750x2)ex12244140625+(5062500x6126562500x5+1054687500x42929687500x3)ex2424414062581ex6

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-27/2*exp(1/24*x)**4+1/781250*(1265625*x**2+9703125*x-84375000)*exp(1/24*x)**3+1/781250*(-50625*x**4
-1586250*x**3+26859375*x**2-84375000*x)*exp(1/24*x)**2+1/781250*(675*x**6+80325*x**5-1884375*x**4+13109375*x**
3-28125000*x**2)*exp(1/24*x)-648/390625*x**7+756/15625*x**6-324/625*x**5+12/5*x**4-4*x**3,x)

[Out]

-81*x**8/390625 + 108*x**7/15625 - 54*x**6/625 + 12*x**5/25 - x**4 + (3164062500*x**2 - 26367187500*x)*exp(x/8
)/244140625 + (-189843750*x**4 + 3164062500*x**3 - 13183593750*x**2)*exp(x/12)/244140625 + (5062500*x**6 - 126
562500*x**5 + 1054687500*x**4 - 2929687500*x**3)*exp(x/24)/244140625 - 81*exp(x/6)

________________________________________________________________________________________