3.17.81
Optimal. Leaf size=24
________________________________________________________________________________________
Rubi [B] time = 0.51, antiderivative size = 161, normalized size of antiderivative = 6.71,
number of steps used = 54, number of rules used = 4, integrand size = 118, = 0.034, Rules used
= {12, 2194, 2196, 2176}
Antiderivative was successfully verified.
[In]
Int[(-10546875*E^(x/6) - 3125000*x^3 + 1875000*x^4 - 405000*x^5 + 37800*x^6 - 1296*x^7 + E^(x/8)*(-84375000 +
9703125*x + 1265625*x^2) + E^(x/12)*(-84375000*x + 26859375*x^2 - 1586250*x^3 - 50625*x^4) + E^(x/24)*(-281250
00*x^2 + 13109375*x^3 - 1884375*x^4 + 80325*x^5 + 675*x^6))/781250,x]
[Out]
-81*E^(x/6) - 108*E^(x/8)*x - 54*E^(x/12)*x^2 + (324*E^(x/8)*x^2)/25 - 12*E^(x/24)*x^3 + (324*E^(x/12)*x^3)/25
- x^4 + (108*E^(x/24)*x^4)/25 - (486*E^(x/12)*x^4)/625 + (12*x^5)/25 - (324*E^(x/24)*x^5)/625 - (54*x^6)/625
+ (324*E^(x/24)*x^6)/15625 + (108*x^7)/15625 - (81*x^8)/390625
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 2176
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2196
Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] && !$UseGamma === True
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 23, normalized size = 0.96
Antiderivative was successfully verified.
[In]
Integrate[(-10546875*E^(x/6) - 3125000*x^3 + 1875000*x^4 - 405000*x^5 + 37800*x^6 - 1296*x^7 + E^(x/8)*(-84375
000 + 9703125*x + 1265625*x^2) + E^(x/12)*(-84375000*x + 26859375*x^2 - 1586250*x^3 - 50625*x^4) + E^(x/24)*(-
28125000*x^2 + 13109375*x^3 - 1884375*x^4 + 80325*x^5 + 675*x^6))/781250,x]
[Out]
-1/390625*(75*E^(x/24) + (25 - 3*x)*x)^4
________________________________________________________________________________________
fricas [B] time = 0.65, size = 96, normalized size = 4.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(-27/2*exp(1/24*x)^4+1/781250*(1265625*x^2+9703125*x-84375000)*exp(1/24*x)^3+1/781250*(-50625*x^4-158
6250*x^3+26859375*x^2-84375000*x)*exp(1/24*x)^2+1/781250*(675*x^6+80325*x^5-1884375*x^4+13109375*x^3-28125000*
x^2)*exp(1/24*x)-648/390625*x^7+756/15625*x^6-324/625*x^5+12/5*x^4-4*x^3,x, algorithm="fricas")
[Out]
-81/390625*x^8 + 108/15625*x^7 - 54/625*x^6 + 12/25*x^5 - x^4 + 108/25*(3*x^2 - 25*x)*e^(1/8*x) - 54/625*(9*x^
4 - 150*x^3 + 625*x^2)*e^(1/12*x) + 12/15625*(27*x^6 - 675*x^5 + 5625*x^4 - 15625*x^3)*e^(1/24*x) - 81*e^(1/6*
x)
________________________________________________________________________________________
giac [B] time = 1.45, size = 96, normalized size = 4.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(-27/2*exp(1/24*x)^4+1/781250*(1265625*x^2+9703125*x-84375000)*exp(1/24*x)^3+1/781250*(-50625*x^4-158
6250*x^3+26859375*x^2-84375000*x)*exp(1/24*x)^2+1/781250*(675*x^6+80325*x^5-1884375*x^4+13109375*x^3-28125000*
x^2)*exp(1/24*x)-648/390625*x^7+756/15625*x^6-324/625*x^5+12/5*x^4-4*x^3,x, algorithm="giac")
[Out]
-81/390625*x^8 + 108/15625*x^7 - 54/625*x^6 + 12/25*x^5 - x^4 + 108/25*(3*x^2 - 25*x)*e^(1/8*x) - 54/625*(9*x^
4 - 150*x^3 + 625*x^2)*e^(1/12*x) + 12/15625*(27*x^6 - 675*x^5 + 5625*x^4 - 15625*x^3)*e^(1/24*x) - 81*e^(1/6*
x)
________________________________________________________________________________________
maple [B] time = 0.09, size = 97, normalized size = 4.04
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
derivativedivides |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-27/2*exp(1/24*x)^4+1/781250*(1265625*x^2+9703125*x-84375000)*exp(1/24*x)^3+1/781250*(-50625*x^4-1586250*x
^3+26859375*x^2-84375000*x)*exp(1/24*x)^2+1/781250*(675*x^6+80325*x^5-1884375*x^4+13109375*x^3-28125000*x^2)*e
xp(1/24*x)-648/390625*x^7+756/15625*x^6-324/625*x^5+12/5*x^4-4*x^3,x,method=_RETURNVERBOSE)
[Out]
-81*exp(1/6*x)+1/781250*(10125000*x^2-84375000*x)*exp(1/8*x)+1/781250*(-607500*x^4+10125000*x^3-42187500*x^2)*
exp(1/12*x)+1/781250*(16200*x^6-405000*x^5+3375000*x^4-9375000*x^3)*exp(1/24*x)-81/390625*x^8+108/15625*x^7-54
/625*x^6+12/25*x^5-x^4
________________________________________________________________________________________
maxima [B] time = 0.46, size = 96, normalized size = 4.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(-27/2*exp(1/24*x)^4+1/781250*(1265625*x^2+9703125*x-84375000)*exp(1/24*x)^3+1/781250*(-50625*x^4-158
6250*x^3+26859375*x^2-84375000*x)*exp(1/24*x)^2+1/781250*(675*x^6+80325*x^5-1884375*x^4+13109375*x^3-28125000*
x^2)*exp(1/24*x)-648/390625*x^7+756/15625*x^6-324/625*x^5+12/5*x^4-4*x^3,x, algorithm="maxima")
[Out]
-81/390625*x^8 + 108/15625*x^7 - 54/625*x^6 + 12/25*x^5 - x^4 + 108/25*(3*x^2 - 25*x)*e^(1/8*x) - 54/625*(9*x^
4 - 150*x^3 + 625*x^2)*e^(1/12*x) + 12/15625*(27*x^6 - 675*x^5 + 5625*x^4 - 15625*x^3)*e^(1/24*x) - 81*e^(1/6*
x)
________________________________________________________________________________________
mupad [B] time = 1.18, size = 19, normalized size = 0.79
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(x/8)*(9703125*x + 1265625*x^2 - 84375000))/781250 - (27*exp(x/6))/2 + (exp(x/24)*(13109375*x^3 - 2812
5000*x^2 - 1884375*x^4 + 80325*x^5 + 675*x^6))/781250 - (exp(x/12)*(84375000*x - 26859375*x^2 + 1586250*x^3 +
50625*x^4))/781250 - 4*x^3 + (12*x^4)/5 - (324*x^5)/625 + (756*x^6)/15625 - (648*x^7)/390625,x)
[Out]
-(25*x + 75*exp(x/24) - 3*x^2)^4/390625
________________________________________________________________________________________
sympy [B] time = 0.26, size = 100, normalized size = 4.17
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(-27/2*exp(1/24*x)**4+1/781250*(1265625*x**2+9703125*x-84375000)*exp(1/24*x)**3+1/781250*(-50625*x**4
-1586250*x**3+26859375*x**2-84375000*x)*exp(1/24*x)**2+1/781250*(675*x**6+80325*x**5-1884375*x**4+13109375*x**
3-28125000*x**2)*exp(1/24*x)-648/390625*x**7+756/15625*x**6-324/625*x**5+12/5*x**4-4*x**3,x)
[Out]
-81*x**8/390625 + 108*x**7/15625 - 54*x**6/625 + 12*x**5/25 - x**4 + (3164062500*x**2 - 26367187500*x)*exp(x/8
)/244140625 + (-189843750*x**4 + 3164062500*x**3 - 13183593750*x**2)*exp(x/12)/244140625 + (5062500*x**6 - 126
562500*x**5 + 1054687500*x**4 - 2929687500*x**3)*exp(x/24)/244140625 - 81*exp(x/6)
________________________________________________________________________________________