Optimal. Leaf size=20 \[ -\left (3-e^3-x\right )^2+\frac {1}{(2+x)^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 21, normalized size of antiderivative = 1.05, number of steps used = 2, number of rules used = 1, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {2074} \begin {gather*} -x^2+2 \left (3-e^3\right ) x+\frac {1}{(x+2)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-2 \left (-3+e^3\right )-2 x-\frac {2}{(2+x)^3}\right ) \, dx\\ &=2 \left (3-e^3\right ) x-x^2+\frac {1}{(2+x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 30, normalized size = 1.50 \begin {gather*} -2 \left (-\frac {1}{2 (2+x)^2}+\left (-5+e^3\right ) (2+x)+\frac {1}{2} (2+x)^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 46, normalized size = 2.30 \begin {gather*} -\frac {x^{4} - 2 \, x^{3} - 20 \, x^{2} + 2 \, {\left (x^{3} + 4 \, x^{2} + 4 \, x\right )} e^{3} - 24 \, x - 1}{x^{2} + 4 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 19, normalized size = 0.95 \begin {gather*} -x^{2} - 2 \, x e^{3} + 6 \, x + \frac {1}{{\left (x + 2\right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 1.00
method | result | size |
default | \(-2 x \,{\mathrm e}^{3}+6 x -x^{2}+\frac {1}{\left (2+x \right )^{2}}\) | \(20\) |
risch | \(-2 x \,{\mathrm e}^{3}-x^{2}+6 x +\frac {1}{x^{2}+4 x +4}\) | \(25\) |
norman | \(\frac {\left (-2 \,{\mathrm e}^{3}+2\right ) x^{3}+\left (-56+24 \,{\mathrm e}^{3}\right ) x -x^{4}-79+32 \,{\mathrm e}^{3}}{\left (2+x \right )^{2}}\) | \(36\) |
gosper | \(-\frac {2 x^{3} {\mathrm e}^{3}+x^{4}-2 x^{3}-24 x \,{\mathrm e}^{3}-32 \,{\mathrm e}^{3}+56 x +79}{x^{2}+4 x +4}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 23, normalized size = 1.15 \begin {gather*} -x^{2} - 2 \, x {\left (e^{3} - 3\right )} + \frac {1}{x^{2} + 4 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.12, size = 25, normalized size = 1.25 \begin {gather*} \frac {1}{x^2+4\,x+4}-x^2-x\,\left (2\,{\mathrm {e}}^3-6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 20, normalized size = 1.00 \begin {gather*} - x^{2} - x \left (-6 + 2 e^{3}\right ) + \frac {1}{x^{2} + 4 x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________