Optimal. Leaf size=24 \[ 8 x+\left (-4+e^{x \left (-25+\frac {1}{4} (-4 x+\log (4))\right )}\right ) x \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 48, normalized size of antiderivative = 2.00, number of steps used = 4, number of rules used = 3, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {12, 6, 2288} \begin {gather*} \frac {2^{x/2} e^{-x^2-25 x} \left (8 x^2+x (100-\log (4))\right )}{8 x+100-\log (4)}+4 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \left (16+e^{\frac {1}{4} \left (-100 x-4 x^2+x \log (4)\right )} \left (4-100 x-8 x^2+x \log (4)\right )\right ) \, dx\\ &=4 x+\frac {1}{4} \int e^{\frac {1}{4} \left (-100 x-4 x^2+x \log (4)\right )} \left (4-100 x-8 x^2+x \log (4)\right ) \, dx\\ &=4 x+\frac {1}{4} \int e^{\frac {1}{4} \left (-100 x-4 x^2+x \log (4)\right )} \left (4-8 x^2+x (-100+\log (4))\right ) \, dx\\ &=4 x+\frac {2^{x/2} e^{-25 x-x^2} \left (8 x^2+x (100-\log (4))\right )}{100+8 x-\log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.12, size = 51, normalized size = 2.12 \begin {gather*} 4 x+\frac {e^{-x^2+x \left (-25+\frac {\log (2)}{2}\right )} \left (-8 x^2+x (-100+\log (4))\right )}{4 \left (-25-2 x+\frac {\log (2)}{2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 21, normalized size = 0.88 \begin {gather*} x e^{\left (-x^{2} + \frac {1}{2} \, x \log \relax (2) - 25 \, x\right )} + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 21, normalized size = 0.88 \begin {gather*} x e^{\left (-x^{2} + \frac {1}{2} \, x \log \relax (2) - 25 \, x\right )} + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 19, normalized size = 0.79
method | result | size |
risch | \(2^{\frac {x}{2}} {\mathrm e}^{-x \left (x +25\right )} x +4 x\) | \(19\) |
default | \(4 x +x \,{\mathrm e}^{-x^{2}+\left (\frac {\ln \relax (2)}{2}-25\right ) x}\) | \(22\) |
norman | \({\mathrm e}^{\frac {x \ln \relax (2)}{2}-x^{2}-25 x} x +4 x\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.67, size = 306, normalized size = 12.75 \begin {gather*} -\frac {1}{16} i \, {\left (\frac {i \, \sqrt {\pi } {\left (4 \, x - \log \relax (2) + 50\right )} {\left (\operatorname {erf}\left (\frac {1}{4} \, \sqrt {{\left (4 \, x - \log \relax (2) + 50\right )}^{2}}\right ) - 1\right )} {\left (\log \relax (2) - 50\right )}}{\sqrt {{\left (4 \, x - \log \relax (2) + 50\right )}^{2}}} - 4 i \, e^{\left (-\frac {1}{16} \, {\left (4 \, x - \log \relax (2) + 50\right )}^{2}\right )}\right )} e^{\left (\frac {1}{16} \, {\left (\log \relax (2) - 50\right )}^{2}\right )} \log \relax (2) + \frac {1}{2} \, \sqrt {\pi } \operatorname {erf}\left (x - \frac {1}{4} \, \log \relax (2) + \frac {25}{2}\right ) e^{\left (\frac {1}{16} \, {\left (\log \relax (2) - 50\right )}^{2}\right )} + \frac {1}{16} i \, {\left (\frac {i \, \sqrt {\pi } {\left (4 \, x - \log \relax (2) + 50\right )} {\left (\operatorname {erf}\left (\frac {1}{4} \, \sqrt {{\left (4 \, x - \log \relax (2) + 50\right )}^{2}}\right ) - 1\right )} {\left (\log \relax (2) - 50\right )}^{2}}{\sqrt {{\left (4 \, x - \log \relax (2) + 50\right )}^{2}}} - \frac {16 i \, {\left (4 \, x - \log \relax (2) + 50\right )}^{3} \Gamma \left (\frac {3}{2}, \frac {1}{16} \, {\left (4 \, x - \log \relax (2) + 50\right )}^{2}\right )}{{\left ({\left (4 \, x - \log \relax (2) + 50\right )}^{2}\right )}^{\frac {3}{2}}} - 8 i \, {\left (\log \relax (2) - 50\right )} e^{\left (-\frac {1}{16} \, {\left (4 \, x - \log \relax (2) + 50\right )}^{2}\right )}\right )} e^{\left (\frac {1}{16} \, {\left (\log \relax (2) - 50\right )}^{2}\right )} + \frac {25}{8} i \, {\left (\frac {i \, \sqrt {\pi } {\left (4 \, x - \log \relax (2) + 50\right )} {\left (\operatorname {erf}\left (\frac {1}{4} \, \sqrt {{\left (4 \, x - \log \relax (2) + 50\right )}^{2}}\right ) - 1\right )} {\left (\log \relax (2) - 50\right )}}{\sqrt {{\left (4 \, x - \log \relax (2) + 50\right )}^{2}}} - 4 i \, e^{\left (-\frac {1}{16} \, {\left (4 \, x - \log \relax (2) + 50\right )}^{2}\right )}\right )} e^{\left (\frac {1}{16} \, {\left (\log \relax (2) - 50\right )}^{2}\right )} + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.16, size = 20, normalized size = 0.83 \begin {gather*} x\,\left (2^{x/2}\,{\mathrm {e}}^{-x^2-25\,x}+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 0.79 \begin {gather*} x e^{- x^{2} - 25 x + \frac {x \log {\relax (2 )}}{2}} + 4 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________