Optimal. Leaf size=18 \[ \frac {\log ^2\left (\frac {1}{2}+x\right )}{x \log ^2(-2+x)} \]
________________________________________________________________________________________
Rubi [F] time = 2.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-8 x+4 x^2\right ) \log (-2+x) \log \left (\frac {1}{2} (1+2 x)\right )+\left (-2 x-4 x^2+\left (2+3 x-2 x^2\right ) \log (-2+x)\right ) \log ^2\left (\frac {1}{2} (1+2 x)\right )}{\left (-2 x^2-3 x^3+2 x^4\right ) \log ^3(-2+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-8 x+4 x^2\right ) \log (-2+x) \log \left (\frac {1}{2} (1+2 x)\right )+\left (-2 x-4 x^2+\left (2+3 x-2 x^2\right ) \log (-2+x)\right ) \log ^2\left (\frac {1}{2} (1+2 x)\right )}{x^2 \left (-2-3 x+2 x^2\right ) \log ^3(-2+x)} \, dx\\ &=\int \left (\frac {4 \log \left (\frac {1}{2}+x\right )}{x (1+2 x) \log ^2(-2+x)}-\frac {(2 x-2 \log (-2+x)+x \log (-2+x)) \log ^2\left (\frac {1}{2}+x\right )}{(-2+x) x^2 \log ^3(-2+x)}\right ) \, dx\\ &=4 \int \frac {\log \left (\frac {1}{2}+x\right )}{x (1+2 x) \log ^2(-2+x)} \, dx-\int \frac {(2 x-2 \log (-2+x)+x \log (-2+x)) \log ^2\left (\frac {1}{2}+x\right )}{(-2+x) x^2 \log ^3(-2+x)} \, dx\\ &=4 \int \left (\frac {\log \left (\frac {1}{2}+x\right )}{x \log ^2(-2+x)}-\frac {2 \log \left (\frac {1}{2}+x\right )}{(1+2 x) \log ^2(-2+x)}\right ) \, dx-\int \left (\frac {(2 x-2 \log (-2+x)+x \log (-2+x)) \log ^2\left (\frac {1}{2}+x\right )}{4 (-2+x) \log ^3(-2+x)}-\frac {(2 x-2 \log (-2+x)+x \log (-2+x)) \log ^2\left (\frac {1}{2}+x\right )}{2 x^2 \log ^3(-2+x)}-\frac {(2 x-2 \log (-2+x)+x \log (-2+x)) \log ^2\left (\frac {1}{2}+x\right )}{4 x \log ^3(-2+x)}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {(2 x-2 \log (-2+x)+x \log (-2+x)) \log ^2\left (\frac {1}{2}+x\right )}{(-2+x) \log ^3(-2+x)} \, dx\right )+\frac {1}{4} \int \frac {(2 x-2 \log (-2+x)+x \log (-2+x)) \log ^2\left (\frac {1}{2}+x\right )}{x \log ^3(-2+x)} \, dx+\frac {1}{2} \int \frac {(2 x-2 \log (-2+x)+x \log (-2+x)) \log ^2\left (\frac {1}{2}+x\right )}{x^2 \log ^3(-2+x)} \, dx+4 \int \frac {\log \left (\frac {1}{2}+x\right )}{x \log ^2(-2+x)} \, dx-8 \int \frac {\log \left (\frac {1}{2}+x\right )}{(1+2 x) \log ^2(-2+x)} \, dx\\ &=\frac {1}{4} \int \left (\frac {2 \log ^2\left (\frac {1}{2}+x\right )}{\log ^3(-2+x)}+\frac {\log ^2\left (\frac {1}{2}+x\right )}{\log ^2(-2+x)}-\frac {2 \log ^2\left (\frac {1}{2}+x\right )}{x \log ^2(-2+x)}\right ) \, dx-\frac {1}{4} \int \left (\frac {2 x \log ^2\left (\frac {1}{2}+x\right )}{(-2+x) \log ^3(-2+x)}-\frac {2 \log ^2\left (\frac {1}{2}+x\right )}{(-2+x) \log ^2(-2+x)}+\frac {x \log ^2\left (\frac {1}{2}+x\right )}{(-2+x) \log ^2(-2+x)}\right ) \, dx+\frac {1}{2} \int \left (\frac {2 \log ^2\left (\frac {1}{2}+x\right )}{x \log ^3(-2+x)}-\frac {2 \log ^2\left (\frac {1}{2}+x\right )}{x^2 \log ^2(-2+x)}+\frac {\log ^2\left (\frac {1}{2}+x\right )}{x \log ^2(-2+x)}\right ) \, dx+4 \int \frac {\log \left (\frac {1}{2}+x\right )}{x \log ^2(-2+x)} \, dx-8 \int \frac {\log \left (\frac {1}{2}+x\right )}{(1+2 x) \log ^2(-2+x)} \, dx\\ &=\frac {1}{4} \int \frac {\log ^2\left (\frac {1}{2}+x\right )}{\log ^2(-2+x)} \, dx-\frac {1}{4} \int \frac {x \log ^2\left (\frac {1}{2}+x\right )}{(-2+x) \log ^2(-2+x)} \, dx+\frac {1}{2} \int \frac {\log ^2\left (\frac {1}{2}+x\right )}{\log ^3(-2+x)} \, dx-\frac {1}{2} \int \frac {x \log ^2\left (\frac {1}{2}+x\right )}{(-2+x) \log ^3(-2+x)} \, dx+\frac {1}{2} \int \frac {\log ^2\left (\frac {1}{2}+x\right )}{(-2+x) \log ^2(-2+x)} \, dx+4 \int \frac {\log \left (\frac {1}{2}+x\right )}{x \log ^2(-2+x)} \, dx-8 \int \frac {\log \left (\frac {1}{2}+x\right )}{(1+2 x) \log ^2(-2+x)} \, dx+\int \frac {\log ^2\left (\frac {1}{2}+x\right )}{x \log ^3(-2+x)} \, dx-\int \frac {\log ^2\left (\frac {1}{2}+x\right )}{x^2 \log ^2(-2+x)} \, dx\\ &=\frac {1}{4} \int \frac {\log ^2\left (\frac {1}{2}+x\right )}{\log ^2(-2+x)} \, dx-\frac {1}{4} \int \left (\frac {\log ^2\left (\frac {1}{2}+x\right )}{\log ^2(-2+x)}+\frac {2 \log ^2\left (\frac {1}{2}+x\right )}{(-2+x) \log ^2(-2+x)}\right ) \, dx+\frac {1}{2} \int \frac {\log ^2\left (\frac {1}{2}+x\right )}{\log ^3(-2+x)} \, dx+\frac {1}{2} \int \frac {\log ^2\left (\frac {1}{2}+x\right )}{(-2+x) \log ^2(-2+x)} \, dx-\frac {1}{2} \int \left (\frac {\log ^2\left (\frac {1}{2}+x\right )}{\log ^3(-2+x)}+\frac {2 \log ^2\left (\frac {1}{2}+x\right )}{(-2+x) \log ^3(-2+x)}\right ) \, dx+4 \int \frac {\log \left (\frac {1}{2}+x\right )}{x \log ^2(-2+x)} \, dx-8 \int \frac {\log \left (\frac {1}{2}+x\right )}{(1+2 x) \log ^2(-2+x)} \, dx+\int \frac {\log ^2\left (\frac {1}{2}+x\right )}{x \log ^3(-2+x)} \, dx-\int \frac {\log ^2\left (\frac {1}{2}+x\right )}{x^2 \log ^2(-2+x)} \, dx\\ &=4 \int \frac {\log \left (\frac {1}{2}+x\right )}{x \log ^2(-2+x)} \, dx-8 \int \frac {\log \left (\frac {1}{2}+x\right )}{(1+2 x) \log ^2(-2+x)} \, dx-\int \frac {\log ^2\left (\frac {1}{2}+x\right )}{(-2+x) \log ^3(-2+x)} \, dx+\int \frac {\log ^2\left (\frac {1}{2}+x\right )}{x \log ^3(-2+x)} \, dx-\int \frac {\log ^2\left (\frac {1}{2}+x\right )}{x^2 \log ^2(-2+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.29, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (-8 x+4 x^2\right ) \log (-2+x) \log \left (\frac {1}{2} (1+2 x)\right )+\left (-2 x-4 x^2+\left (2+3 x-2 x^2\right ) \log (-2+x)\right ) \log ^2\left (\frac {1}{2} (1+2 x)\right )}{\left (-2 x^2-3 x^3+2 x^4\right ) \log ^3(-2+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 16, normalized size = 0.89 \begin {gather*} \frac {\log \left (x + \frac {1}{2}\right )^{2}}{x \log \left (x - 2\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.34, size = 52, normalized size = 2.89 \begin {gather*} \frac {\log \relax (2)^{2}}{x \log \left (x - 2\right )^{2}} - \frac {2 \, \log \relax (2) \log \left (2 \, x + 1\right )}{x \log \left (x - 2\right )^{2}} + \frac {\log \left (2 \, x + 1\right )^{2}}{x \log \left (x - 2\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 17, normalized size = 0.94
method | result | size |
risch | \(\frac {\ln \left (\frac {1}{2}+x \right )^{2}}{x \ln \left (x -2\right )^{2}}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.70, size = 33, normalized size = 1.83 \begin {gather*} \frac {\log \relax (2)^{2} - 2 \, \log \relax (2) \log \left (2 \, x + 1\right ) + \log \left (2 \, x + 1\right )^{2}}{x \log \left (x - 2\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.35, size = 16, normalized size = 0.89 \begin {gather*} \frac {{\ln \left (x+\frac {1}{2}\right )}^2}{x\,{\ln \left (x-2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 15, normalized size = 0.83 \begin {gather*} \frac {\log {\left (x + \frac {1}{2} \right )}^{2}}{x \log {\left (x - 2 \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________