Optimal. Leaf size=27 \[ \frac {2 \left (-2+2 e^3+e^{x^4}+x^2\right )}{x+2 e^5 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 53, normalized size of antiderivative = 1.96, number of steps used = 7, number of rules used = 4, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {6, 12, 14, 2288} \begin {gather*} \frac {2 e^{x^4}}{\left (1+2 e^5\right ) x}+\frac {2 x}{1+2 e^5}-\frac {4 \left (1-e^3\right )}{\left (1+2 e^5\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4-4 e^3+2 x^2+e^{x^4} \left (-2+8 x^4\right )}{\left (1+2 e^5\right ) x^2} \, dx\\ &=\frac {\int \frac {4-4 e^3+2 x^2+e^{x^4} \left (-2+8 x^4\right )}{x^2} \, dx}{1+2 e^5}\\ &=\frac {\int \left (-\frac {2 \left (-2+2 e^3-x^2\right )}{x^2}+\frac {2 e^{x^4} \left (-1+4 x^4\right )}{x^2}\right ) \, dx}{1+2 e^5}\\ &=-\frac {2 \int \frac {-2+2 e^3-x^2}{x^2} \, dx}{1+2 e^5}+\frac {2 \int \frac {e^{x^4} \left (-1+4 x^4\right )}{x^2} \, dx}{1+2 e^5}\\ &=\frac {2 e^{x^4}}{\left (1+2 e^5\right ) x}-\frac {2 \int \left (-1+\frac {2 \left (-1+e^3\right )}{x^2}\right ) \, dx}{1+2 e^5}\\ &=\frac {2 e^{x^4}}{\left (1+2 e^5\right ) x}-\frac {4 \left (1-e^3\right )}{\left (1+2 e^5\right ) x}+\frac {2 x}{1+2 e^5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 29, normalized size = 1.07 \begin {gather*} \frac {2 \left (-2+2 e^3+e^{x^4}+x^2\right )}{\left (1+2 e^5\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 24, normalized size = 0.89 \begin {gather*} \frac {2 \, {\left (x^{2} + 2 \, e^{3} + e^{\left (x^{4}\right )} - 2\right )}}{2 \, x e^{5} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 52, normalized size = 1.93 \begin {gather*} \frac {2 \, {\left (2 \, x^{2} e^{5} + x^{2} + 4 \, e^{8} - 4 \, e^{5} + 2 \, e^{3} + 2 \, e^{\left (x^{4} + 5\right )} + e^{\left (x^{4}\right )} - 2\right )}}{4 \, x e^{10} + 4 \, x e^{5} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.31, size = 47, normalized size = 1.74
method | result | size |
norman | \(\frac {\frac {4 \,{\mathrm e}^{3}-4}{2 \,{\mathrm e}^{5}+1}+\frac {2 x^{2}}{2 \,{\mathrm e}^{5}+1}+\frac {2 \,{\mathrm e}^{x^{4}}}{2 \,{\mathrm e}^{5}+1}}{x}\) | \(47\) |
risch | \(\frac {2 x}{2 \,{\mathrm e}^{5}+1}+\frac {8 \,{\mathrm e}^{8}}{\left (2 \,{\mathrm e}^{5}+1\right )^{2} x}-\frac {8 \,{\mathrm e}^{5}}{\left (2 \,{\mathrm e}^{5}+1\right )^{2} x}+\frac {4 \,{\mathrm e}^{3}}{\left (2 \,{\mathrm e}^{5}+1\right )^{2} x}-\frac {4}{\left (2 \,{\mathrm e}^{5}+1\right )^{2} x}+\frac {2 \,{\mathrm e}^{x^{4}}}{\left (2 \,{\mathrm e}^{5}+1\right ) x}\) | \(88\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.45, size = 94, normalized size = 3.48 \begin {gather*} -\frac {2 \, x^{3} \Gamma \left (\frac {3}{4}, -x^{4}\right )}{\left (-x^{4}\right )^{\frac {3}{4}} {\left (2 \, e^{5} + 1\right )}} + \frac {2 \, x}{2 \, e^{5} + 1} + \frac {\left (-x^{4}\right )^{\frac {1}{4}} \Gamma \left (-\frac {1}{4}, -x^{4}\right )}{2 \, x {\left (2 \, e^{5} + 1\right )}} + \frac {4 \, e^{3}}{x {\left (2 \, e^{5} + 1\right )}} - \frac {4}{x {\left (2 \, e^{5} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.09, size = 26, normalized size = 0.96 \begin {gather*} \frac {2\,\left ({\mathrm {e}}^{x^4}+2\,{\mathrm {e}}^3+x^2-2\right )}{x\,\left (2\,{\mathrm {e}}^5+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 32, normalized size = 1.19 \begin {gather*} \frac {2 x + \frac {-4 + 4 e^{3}}{x}}{1 + 2 e^{5}} + \frac {2 e^{x^{4}}}{x + 2 x e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________