Optimal. Leaf size=35 \[ x^2 \left (1-x+\frac {e^3}{3-2^{20/x} x^{20/x}}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 2.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-54 x-6 e^6 x+162 x^2-108 x^3+e^3 \left (-36 x+54 x^2\right )+2^{60/x} x^{60/x} \left (2 x-6 x^2+4 x^3\right )+2^{20/x} x^{20/x} \left (54 x-162 x^2+108 x^3+e^6 (-40+2 x)+e^3 \left (-120+144 x-36 x^2\right )+\left (40 e^6+e^3 (120-120 x)\right ) \log (2 x)\right )+2^{40/x} x^{40/x} \left (-18 x+54 x^2-36 x^3+e^3 \left (40-44 x+6 x^2\right )+e^3 (-40+40 x) \log (2 x)\right )}{-27+27\ 2^{20/x} x^{20/x}-9\ 2^{40/x} x^{40/x}+2^{60/x} x^{60/x}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-54-6 e^6\right ) x+162 x^2-108 x^3+e^3 \left (-36 x+54 x^2\right )+2^{60/x} x^{60/x} \left (2 x-6 x^2+4 x^3\right )+2^{20/x} x^{20/x} \left (54 x-162 x^2+108 x^3+e^6 (-40+2 x)+e^3 \left (-120+144 x-36 x^2\right )+\left (40 e^6+e^3 (120-120 x)\right ) \log (2 x)\right )+2^{40/x} x^{40/x} \left (-18 x+54 x^2-36 x^3+e^3 \left (40-44 x+6 x^2\right )+e^3 (-40+40 x) \log (2 x)\right )}{-27+27\ 2^{20/x} x^{20/x}-9\ 2^{40/x} x^{40/x}+2^{60/x} x^{60/x}} \, dx\\ &=\int \frac {-\left (\left (-54-6 e^6\right ) x\right )-162 x^2+108 x^3-e^3 \left (-36 x+54 x^2\right )-2^{60/x} x^{60/x} \left (2 x-6 x^2+4 x^3\right )-2^{20/x} x^{20/x} \left (54 x-162 x^2+108 x^3+e^6 (-40+2 x)+e^3 \left (-120+144 x-36 x^2\right )+\left (40 e^6+e^3 (120-120 x)\right ) \log (2 x)\right )-2^{40/x} x^{40/x} \left (-18 x+54 x^2-36 x^3+e^3 \left (40-44 x+6 x^2\right )+e^3 (-40+40 x) \log (2 x)\right )}{\left (3-2^{20/x} x^{20/x}\right )^3} \, dx\\ &=\int \left (2 x \left (1-3 x+2 x^2\right )+\frac {120 e^6 (-1+\log (2 x))}{\left (-3+2^{20/x} x^{20/x}\right )^3}+\frac {2 e^3 \left (20-22 x+3 x^2-20 \log (2 x)+20 x \log (2 x)\right )}{-3+2^{20/x} x^{20/x}}+\frac {2 e^3 \left (60 \left (1-\frac {e^3}{3}\right )-60 \left (1-\frac {e^3}{60}\right ) x-60 \left (1-\frac {e^3}{3}\right ) \log (2 x)+60 x \log (2 x)\right )}{\left (3-2^{20/x} x^{20/x}\right )^2}\right ) \, dx\\ &=2 \int x \left (1-3 x+2 x^2\right ) \, dx+\left (2 e^3\right ) \int \frac {20-22 x+3 x^2-20 \log (2 x)+20 x \log (2 x)}{-3+2^{20/x} x^{20/x}} \, dx+\left (2 e^3\right ) \int \frac {60 \left (1-\frac {e^3}{3}\right )-60 \left (1-\frac {e^3}{60}\right ) x-60 \left (1-\frac {e^3}{3}\right ) \log (2 x)+60 x \log (2 x)}{\left (3-2^{20/x} x^{20/x}\right )^2} \, dx+\left (120 e^6\right ) \int \frac {-1+\log (2 x)}{\left (-3+2^{20/x} x^{20/x}\right )^3} \, dx\\ &=2 \int \left (x-3 x^2+2 x^3\right ) \, dx+\left (2 e^3\right ) \int \frac {e^3 (-20+x)-60 (-1+x)+20 \left (-3+e^3+3 x\right ) \log (2 x)}{\left (3-2^{20/x} x^{20/x}\right )^2} \, dx+\left (2 e^3\right ) \int \left (\frac {20}{-3+2^{20/x} x^{20/x}}-\frac {22 x}{-3+2^{20/x} x^{20/x}}+\frac {3 x^2}{-3+2^{20/x} x^{20/x}}-\frac {20 \log (2 x)}{-3+2^{20/x} x^{20/x}}+\frac {20 x \log (2 x)}{-3+2^{20/x} x^{20/x}}\right ) \, dx+\left (120 e^6\right ) \int \left (-\frac {1}{\left (-3+2^{20/x} x^{20/x}\right )^3}+\frac {\log (2 x)}{\left (-3+2^{20/x} x^{20/x}\right )^3}\right ) \, dx\\ &=x^2-2 x^3+x^4+\left (2 e^3\right ) \int \left (\frac {60 \left (1-\frac {e^3}{3}\right )}{\left (-3+2^{20/x} x^{20/x}\right )^2}-\frac {60 \left (1-\frac {e^3}{60}\right ) x}{\left (-3+2^{20/x} x^{20/x}\right )^2}-\frac {60 \left (1-\frac {e^3}{3}\right ) \log (2 x)}{\left (-3+2^{20/x} x^{20/x}\right )^2}+\frac {60 x \log (2 x)}{\left (-3+2^{20/x} x^{20/x}\right )^2}\right ) \, dx+\left (6 e^3\right ) \int \frac {x^2}{-3+2^{20/x} x^{20/x}} \, dx+\left (40 e^3\right ) \int \frac {1}{-3+2^{20/x} x^{20/x}} \, dx-\left (40 e^3\right ) \int \frac {\log (2 x)}{-3+2^{20/x} x^{20/x}} \, dx+\left (40 e^3\right ) \int \frac {x \log (2 x)}{-3+2^{20/x} x^{20/x}} \, dx-\left (44 e^3\right ) \int \frac {x}{-3+2^{20/x} x^{20/x}} \, dx-\left (120 e^6\right ) \int \frac {1}{\left (-3+2^{20/x} x^{20/x}\right )^3} \, dx+\left (120 e^6\right ) \int \frac {\log (2 x)}{\left (-3+2^{20/x} x^{20/x}\right )^3} \, dx\\ &=x^2-2 x^3+x^4+\left (6 e^3\right ) \int \frac {x^2}{-3+2^{20/x} x^{20/x}} \, dx+\left (40 e^3\right ) \int \frac {1}{-3+2^{20/x} x^{20/x}} \, dx+\left (40 e^3\right ) \int \frac {\int \frac {1}{-3+2^{20/x} x^{20/x}} \, dx}{x} \, dx-\left (40 e^3\right ) \int \frac {\int \frac {x}{-3+2^{20/x} x^{20/x}} \, dx}{x} \, dx-\left (44 e^3\right ) \int \frac {x}{-3+2^{20/x} x^{20/x}} \, dx+\left (120 e^3\right ) \int \frac {x \log (2 x)}{\left (-3+2^{20/x} x^{20/x}\right )^2} \, dx-\left (120 e^6\right ) \int \frac {1}{\left (-3+2^{20/x} x^{20/x}\right )^3} \, dx-\left (120 e^6\right ) \int \frac {\int \frac {1}{\left (-3+2^{20/x} x^{20/x}\right )^3} \, dx}{x} \, dx+\left (40 e^3 \left (3-e^3\right )\right ) \int \frac {1}{\left (-3+2^{20/x} x^{20/x}\right )^2} \, dx-\left (40 e^3 \left (3-e^3\right )\right ) \int \frac {\log (2 x)}{\left (-3+2^{20/x} x^{20/x}\right )^2} \, dx-\left (2 e^3 \left (60-e^3\right )\right ) \int \frac {x}{\left (-3+2^{20/x} x^{20/x}\right )^2} \, dx-\left (40 e^3 \log (2 x)\right ) \int \frac {1}{-3+2^{20/x} x^{20/x}} \, dx+\left (40 e^3 \log (2 x)\right ) \int \frac {x}{-3+2^{20/x} x^{20/x}} \, dx+\left (120 e^6 \log (2 x)\right ) \int \frac {1}{\left (-3+2^{20/x} x^{20/x}\right )^3} \, dx\\ &=x^2-2 x^3+x^4+\left (6 e^3\right ) \int \frac {x^2}{-3+2^{20/x} x^{20/x}} \, dx+\left (40 e^3\right ) \int \frac {1}{-3+2^{20/x} x^{20/x}} \, dx+\left (40 e^3\right ) \int \frac {\int \frac {1}{-3+2^{20/x} x^{20/x}} \, dx}{x} \, dx-\left (40 e^3\right ) \int \frac {\int \frac {x}{-3+2^{20/x} x^{20/x}} \, dx}{x} \, dx-\left (44 e^3\right ) \int \frac {x}{-3+2^{20/x} x^{20/x}} \, dx-\left (120 e^3\right ) \int \frac {\int \frac {x}{\left (-3+2^{20/x} x^{20/x}\right )^2} \, dx}{x} \, dx-\left (120 e^6\right ) \int \frac {1}{\left (-3+2^{20/x} x^{20/x}\right )^3} \, dx-\left (120 e^6\right ) \int \frac {\int \frac {1}{\left (-3+2^{20/x} x^{20/x}\right )^3} \, dx}{x} \, dx+\left (40 e^3 \left (3-e^3\right )\right ) \int \frac {1}{\left (-3+2^{20/x} x^{20/x}\right )^2} \, dx+\left (40 e^3 \left (3-e^3\right )\right ) \int \frac {\int \frac {1}{\left (-3+2^{20/x} x^{20/x}\right )^2} \, dx}{x} \, dx-\left (2 e^3 \left (60-e^3\right )\right ) \int \frac {x}{\left (-3+2^{20/x} x^{20/x}\right )^2} \, dx-\left (40 e^3 \log (2 x)\right ) \int \frac {1}{-3+2^{20/x} x^{20/x}} \, dx+\left (40 e^3 \log (2 x)\right ) \int \frac {x}{-3+2^{20/x} x^{20/x}} \, dx+\left (120 e^3 \log (2 x)\right ) \int \frac {x}{\left (-3+2^{20/x} x^{20/x}\right )^2} \, dx+\left (120 e^6 \log (2 x)\right ) \int \frac {1}{\left (-3+2^{20/x} x^{20/x}\right )^3} \, dx-\left (40 e^3 \left (3-e^3\right ) \log (2 x)\right ) \int \frac {1}{\left (-3+2^{20/x} x^{20/x}\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.31, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-54 x-6 e^6 x+162 x^2-108 x^3+e^3 \left (-36 x+54 x^2\right )+2^{60/x} x^{60/x} \left (2 x-6 x^2+4 x^3\right )+2^{20/x} x^{20/x} \left (54 x-162 x^2+108 x^3+e^6 (-40+2 x)+e^3 \left (-120+144 x-36 x^2\right )+\left (40 e^6+e^3 (120-120 x)\right ) \log (2 x)\right )+2^{40/x} x^{40/x} \left (-18 x+54 x^2-36 x^3+e^3 \left (40-44 x+6 x^2\right )+e^3 (-40+40 x) \log (2 x)\right )}{-27+27\ 2^{20/x} x^{20/x}-9\ 2^{40/x} x^{40/x}+2^{60/x} x^{60/x}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.74, size = 122, normalized size = 3.49 \begin {gather*} \frac {9 \, x^{4} - 18 \, x^{3} + x^{2} e^{6} + {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} \left (2 \, x\right )^{\frac {40}{x}} - 2 \, {\left (3 \, x^{4} - 6 \, x^{3} + 3 \, x^{2} - {\left (x^{3} - x^{2}\right )} e^{3}\right )} \left (2 \, x\right )^{\frac {20}{x}} + 9 \, x^{2} - 6 \, {\left (x^{3} - x^{2}\right )} e^{3}}{\left (2 \, x\right )^{\frac {40}{x}} - 6 \, \left (2 \, x\right )^{\frac {20}{x}} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 62, normalized size = 1.77
method | result | size |
risch | \(x^{4}-2 x^{3}+x^{2}+\frac {\left (2 \left (2 x \right )^{\frac {20}{x}} x +{\mathrm e}^{3}-6 x -2 \left (2 x \right )^{\frac {20}{x}}+6\right ) x^{2} {\mathrm e}^{3}}{\left (\left (2 x \right )^{\frac {20}{x}}-3\right )^{2}}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.78, size = 136, normalized size = 3.89 \begin {gather*} \frac {9 \, x^{4} - 6 \, x^{3} {\left (e^{3} + 3\right )} + x^{2} {\left (e^{6} + 6 \, e^{3} + 9\right )} + {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} e^{\left (\frac {40 \, \log \relax (2)}{x} + \frac {40 \, \log \relax (x)}{x}\right )} - 2 \, {\left (3 \, x^{4} - x^{3} {\left (e^{3} + 6\right )} + x^{2} {\left (e^{3} + 3\right )}\right )} e^{\left (\frac {20 \, \log \relax (2)}{x} + \frac {20 \, \log \relax (x)}{x}\right )}}{e^{\left (\frac {40 \, \log \relax (2)}{x} + \frac {40 \, \log \relax (x)}{x}\right )} - 6 \, e^{\left (\frac {20 \, \log \relax (2)}{x} + \frac {20 \, \log \relax (x)}{x}\right )} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.38, size = 139, normalized size = 3.97 \begin {gather*} x^2-2\,x^3+x^4-\frac {x^2\,{\mathrm {e}}^6-x^2\,\ln \left (2\,x\right )\,{\mathrm {e}}^6}{\left (\ln \left (2\,x\right )-1\right )\,\left (2^{40/x}\,x^{40/x}-6\,2^{20/x}\,x^{20/x}+9\right )}+\frac {2\,\left (x^2\,{\mathrm {e}}^3-x^3\,{\mathrm {e}}^3-x^2\,\ln \left (2\,x\right )\,{\mathrm {e}}^3+x^3\,\ln \left (2\,x\right )\,{\mathrm {e}}^3\right )}{\left (2^{20/x}\,x^{20/x}-3\right )\,\left (\ln \left (2\,x\right )-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.48, size = 85, normalized size = 2.43 \begin {gather*} x^{4} - 2 x^{3} + x^{2} + \frac {- 6 x^{3} e^{3} + 6 x^{2} e^{3} + x^{2} e^{6} + \left (2 x^{3} e^{3} - 2 x^{2} e^{3}\right ) e^{\frac {20 \log {\left (2 x \right )}}{x}}}{e^{\frac {40 \log {\left (2 x \right )}}{x}} - 6 e^{\frac {20 \log {\left (2 x \right )}}{x}} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________