Optimal. Leaf size=29 \[ -e^{\frac {x^2}{2}}+x+\log (2)-\frac {-5+x-\log ^2(x)}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 26, normalized size of antiderivative = 0.90, number of steps used = 10, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {14, 2209, 2304, 2305} \begin {gather*} -e^{\frac {x^2}{2}}+x+\frac {5}{x}+\frac {\log ^2(x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2209
Rule 2304
Rule 2305
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{\frac {x^2}{2}} x+\frac {-5+x^2+2 \log (x)-\log ^2(x)}{x^2}\right ) \, dx\\ &=-\int e^{\frac {x^2}{2}} x \, dx+\int \frac {-5+x^2+2 \log (x)-\log ^2(x)}{x^2} \, dx\\ &=-e^{\frac {x^2}{2}}+\int \left (\frac {-5+x^2}{x^2}+\frac {2 \log (x)}{x^2}-\frac {\log ^2(x)}{x^2}\right ) \, dx\\ &=-e^{\frac {x^2}{2}}+2 \int \frac {\log (x)}{x^2} \, dx+\int \frac {-5+x^2}{x^2} \, dx-\int \frac {\log ^2(x)}{x^2} \, dx\\ &=-e^{\frac {x^2}{2}}-\frac {2}{x}-\frac {2 \log (x)}{x}+\frac {\log ^2(x)}{x}-2 \int \frac {\log (x)}{x^2} \, dx+\int \left (1-\frac {5}{x^2}\right ) \, dx\\ &=-e^{\frac {x^2}{2}}+\frac {5}{x}+x+\frac {\log ^2(x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 26, normalized size = 0.90 \begin {gather*} -e^{\frac {x^2}{2}}+\frac {5}{x}+x+\frac {\log ^2(x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 22, normalized size = 0.76 \begin {gather*} \frac {x^{2} - x e^{\left (\frac {1}{2} \, x^{2}\right )} + \log \relax (x)^{2} + 5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 22, normalized size = 0.76 \begin {gather*} \frac {x^{2} - x e^{\left (\frac {1}{2} \, x^{2}\right )} + \log \relax (x)^{2} + 5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 0.90
method | result | size |
default | \(x +\frac {5}{x}-{\mathrm e}^{\frac {x^{2}}{2}}+\frac {\ln \relax (x )^{2}}{x}\) | \(26\) |
risch | \(\frac {\ln \relax (x )^{2}}{x}+\frac {-x \,{\mathrm e}^{\frac {x^{2}}{2}}+x^{2}+5}{x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 36, normalized size = 1.24 \begin {gather*} x + \frac {\log \relax (x)^{2} + 2 \, \log \relax (x) + 2}{x} - \frac {2 \, \log \relax (x)}{x} + \frac {3}{x} - e^{\left (\frac {1}{2} \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.11, size = 20, normalized size = 0.69 \begin {gather*} x-{\mathrm {e}}^{\frac {x^2}{2}}+\frac {{\ln \relax (x)}^2+5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 17, normalized size = 0.59 \begin {gather*} x - e^{\frac {x^{2}}{2}} + \frac {\log {\relax (x )}^{2}}{x} + \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________