Optimal. Leaf size=28 \[ -6+2 x-x \left (5 x-x^3\right )^2+\log \left (\frac {2 x}{5+x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 27, normalized size of antiderivative = 0.96, number of steps used = 3, number of rules used = 2, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {1593, 1620} \begin {gather*} -x^7+10 x^5-25 x^3+2 x+\log (x)-\log (x+5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5+10 x+2 x^2-375 x^3-75 x^4+250 x^5+50 x^6-35 x^7-7 x^8}{x (5+x)} \, dx\\ &=\int \left (2+\frac {1}{-5-x}+\frac {1}{x}-75 x^2+50 x^4-7 x^6\right ) \, dx\\ &=2 x-25 x^3+10 x^5-x^7+\log (x)-\log (5+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 27, normalized size = 0.96 \begin {gather*} 2 x-25 x^3+10 x^5-x^7+\log (x)-\log (5+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 27, normalized size = 0.96 \begin {gather*} -x^{7} + 10 \, x^{5} - 25 \, x^{3} + 2 \, x - \log \left (x + 5\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 29, normalized size = 1.04 \begin {gather*} -x^{7} + 10 \, x^{5} - 25 \, x^{3} + 2 \, x - \log \left ({\left | x + 5 \right |}\right ) + \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 28, normalized size = 1.00
method | result | size |
default | \(-x^{7}+10 x^{5}-25 x^{3}+2 x +\ln \relax (x )-\ln \left (5+x \right )\) | \(28\) |
norman | \(-x^{7}+10 x^{5}-25 x^{3}+2 x +\ln \relax (x )-\ln \left (5+x \right )\) | \(28\) |
risch | \(-x^{7}+10 x^{5}-25 x^{3}+2 x +\ln \relax (x )-\ln \left (5+x \right )\) | \(28\) |
meijerg | \(-\ln \left (1+\frac {x}{5}\right )+\ln \relax (x )-\ln \relax (5)-\frac {3125 x \left (\frac {24}{3125} x^{6}-\frac {28}{625} x^{5}+\frac {168}{625} x^{4}-\frac {42}{25} x^{3}+\frac {56}{5} x^{2}-84 x +840\right )}{24}+\frac {3125 x \left (-\frac {14}{625} x^{5}+\frac {84}{625} x^{4}-\frac {21}{25} x^{3}+\frac {28}{5} x^{2}-42 x +420\right )}{12}+\frac {3125 x \left (\frac {12}{625} x^{4}-\frac {3}{25} x^{3}+\frac {4}{5} x^{2}-6 x +60\right )}{6}-\frac {3125 x \left (-\frac {3}{25} x^{3}+\frac {4}{5} x^{2}-6 x +60\right )}{6}-\frac {625 x \left (\frac {4}{25} x^{2}-\frac {6}{5} x +12\right )}{4}+\frac {625 x \left (-\frac {3 x}{5}+6\right )}{2}+2 x\) | \(142\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 27, normalized size = 0.96 \begin {gather*} -x^{7} + 10 \, x^{5} - 25 \, x^{3} + 2 \, x - \log \left (x + 5\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.05, size = 30, normalized size = 1.07 \begin {gather*} 2\,x-25\,x^3+10\,x^5-x^7+\mathrm {atan}\left (\frac {x\,2{}\mathrm {i}}{5}+1{}\mathrm {i}\right )\,2{}\mathrm {i} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 24, normalized size = 0.86 \begin {gather*} - x^{7} + 10 x^{5} - 25 x^{3} + 2 x + \log {\relax (x )} - \log {\left (x + 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________