Optimal. Leaf size=23 \[ x \left (3-x-e^{-e^{\frac {x^2}{8}}} x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{4} e^{-e^{\frac {x^2}{8}}} \left (e^{e^{\frac {x^2}{8}}} (12-8 x)-8 x+e^{\frac {x^2}{8}} x^3\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int e^{-e^{\frac {x^2}{8}}} \left (e^{e^{\frac {x^2}{8}}} (12-8 x)-8 x+e^{\frac {x^2}{8}} x^3\right ) \, dx\\ &=\frac {1}{4} \int \left (-8 e^{-e^{\frac {x^2}{8}}} x+e^{-e^{\frac {x^2}{8}}+\frac {x^2}{8}} x^3-4 (-3+2 x)\right ) \, dx\\ &=-\frac {1}{4} (3-2 x)^2+\frac {1}{4} \int e^{-e^{\frac {x^2}{8}}+\frac {x^2}{8}} x^3 \, dx-2 \int e^{-e^{\frac {x^2}{8}}} x \, dx\\ &=-\frac {1}{4} (3-2 x)^2+\frac {1}{8} \operatorname {Subst}\left (\int e^{\frac {1}{8} \left (-8 e^{x/8}+x\right )} x \, dx,x,x^2\right )-\operatorname {Subst}\left (\int e^{-e^{x/8}} \, dx,x,x^2\right )\\ &=-\frac {1}{4} (3-2 x)^2+\frac {1}{8} \operatorname {Subst}\left (\int e^{\frac {1}{8} \left (-8 e^{x/8}+x\right )} x \, dx,x,x^2\right )-8 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,e^{\frac {x^2}{8}}\right )\\ &=-\frac {1}{4} (3-2 x)^2-8 \text {Ei}\left (-e^{\frac {x^2}{8}}\right )+\frac {1}{8} \operatorname {Subst}\left (\int e^{\frac {1}{8} \left (-8 e^{x/8}+x\right )} x \, dx,x,x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 23, normalized size = 1.00 \begin {gather*} x \left (3+\left (-1-e^{-e^{\frac {x^2}{8}}}\right ) x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 30, normalized size = 1.30 \begin {gather*} -{\left (x^{2} + {\left (x^{2} - 3 \, x\right )} e^{\left (e^{\left (\frac {1}{8} \, x^{2}\right )}\right )}\right )} e^{\left (-e^{\left (\frac {1}{8} \, x^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 23, normalized size = 1.00 \begin {gather*} -x^{2} e^{\left (-e^{\left (\frac {1}{8} \, x^{2}\right )}\right )} - x^{2} + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 24, normalized size = 1.04
method | result | size |
risch | \(-x^{2}+3 x -x^{2} {\mathrm e}^{-{\mathrm e}^{\frac {x^{2}}{8}}}\) | \(24\) |
norman | \(\left (-x^{2}+3 x \,{\mathrm e}^{{\mathrm e}^{\frac {x^{2}}{8}}}-x^{2} {\mathrm e}^{{\mathrm e}^{\frac {x^{2}}{8}}}\right ) {\mathrm e}^{-{\mathrm e}^{\frac {x^{2}}{8}}}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.84, size = 23, normalized size = 1.00 \begin {gather*} -x^{2} e^{\left (-e^{\left (\frac {1}{8} \, x^{2}\right )}\right )} - x^{2} + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.09, size = 17, normalized size = 0.74 \begin {gather*} -x\,\left (x+x\,{\mathrm {e}}^{-{\mathrm {e}}^{\frac {x^2}{8}}}-3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 17, normalized size = 0.74 \begin {gather*} - x^{2} - x^{2} e^{- e^{\frac {x^{2}}{8}}} + 3 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________