Optimal. Leaf size=31 \[ \left (-2+e^{\frac {e^{e^2}}{20 x^2}}+\left (4-e^{3 x}\right ) (-1+x)\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 3.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-e^{e^2+\frac {e^{e^2}}{10 x^2}}-240 x^3+160 x^4+e^{3 x} \left (-80 x^3+220 x^4-120 x^5\right )+e^{6 x} \left (20 x^3-50 x^4+30 x^5\right )+e^{\frac {e^{e^2}}{20 x^2}} \left (e^{e^2} \left (6+e^{3 x} (-1+x)-4 x\right )+40 x^3+e^{3 x} \left (20 x^3-30 x^4\right )\right )}{5 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {-e^{e^2+\frac {e^{e^2}}{10 x^2}}-240 x^3+160 x^4+e^{3 x} \left (-80 x^3+220 x^4-120 x^5\right )+e^{6 x} \left (20 x^3-50 x^4+30 x^5\right )+e^{\frac {e^{e^2}}{20 x^2}} \left (e^{e^2} \left (6+e^{3 x} (-1+x)-4 x\right )+40 x^3+e^{3 x} \left (20 x^3-30 x^4\right )\right )}{x^3} \, dx\\ &=\frac {1}{5} \int \left (10 e^{6 x} (-1+x) (-2+3 x)+\frac {\left (-6+e^{\frac {e^{e^2}}{20 x^2}}+4 x\right ) \left (-e^{e^2+\frac {e^{e^2}}{20 x^2}}+40 x^3\right )}{x^3}-\frac {e^{3 x} \left (e^{e^2+\frac {e^{e^2}}{20 x^2}}-e^{e^2+\frac {e^{e^2}}{20 x^2}} x+80 x^3-20 e^{\frac {e^{e^2}}{20 x^2}} x^3-220 x^4+30 e^{\frac {e^{e^2}}{20 x^2}} x^4+120 x^5\right )}{x^3}\right ) \, dx\\ &=\frac {1}{5} \int \frac {\left (-6+e^{\frac {e^{e^2}}{20 x^2}}+4 x\right ) \left (-e^{e^2+\frac {e^{e^2}}{20 x^2}}+40 x^3\right )}{x^3} \, dx-\frac {1}{5} \int \frac {e^{3 x} \left (e^{e^2+\frac {e^{e^2}}{20 x^2}}-e^{e^2+\frac {e^{e^2}}{20 x^2}} x+80 x^3-20 e^{\frac {e^{e^2}}{20 x^2}} x^3-220 x^4+30 e^{\frac {e^{e^2}}{20 x^2}} x^4+120 x^5\right )}{x^3} \, dx+2 \int e^{6 x} (-1+x) (-2+3 x) \, dx\\ &=\left (6-e^{\frac {e^{e^2}}{20 x^2}}-4 x\right )^2-\frac {1}{5} \int \frac {e^{3 x} \left (-e^{e^2+\frac {e^{e^2}}{20 x^2}} (-1+x)+10 e^{\frac {e^{e^2}}{20 x^2}} x^3 (-2+3 x)+20 x^3 \left (4-11 x+6 x^2\right )\right )}{x^3} \, dx+2 \int \left (2 e^{6 x}-5 e^{6 x} x+3 e^{6 x} x^2\right ) \, dx\\ &=\left (6-e^{\frac {e^{e^2}}{20 x^2}}-4 x\right )^2-\frac {1}{5} \int \left (20 e^{3 x} (-1+2 x) (-4+3 x)+\frac {e^{\frac {e^{e^2}}{20 x^2}+3 x} \left (e^{e^2}-e^{e^2} x-20 x^3+30 x^4\right )}{x^3}\right ) \, dx+4 \int e^{6 x} \, dx+6 \int e^{6 x} x^2 \, dx-10 \int e^{6 x} x \, dx\\ &=\frac {2 e^{6 x}}{3}+\left (6-e^{\frac {e^{e^2}}{20 x^2}}-4 x\right )^2-\frac {5}{3} e^{6 x} x+e^{6 x} x^2-\frac {1}{5} \int \frac {e^{\frac {e^{e^2}}{20 x^2}+3 x} \left (e^{e^2}-e^{e^2} x-20 x^3+30 x^4\right )}{x^3} \, dx+\frac {5}{3} \int e^{6 x} \, dx-2 \int e^{6 x} x \, dx-4 \int e^{3 x} (-1+2 x) (-4+3 x) \, dx\\ &=\frac {17 e^{6 x}}{18}+\left (6-e^{\frac {e^{e^2}}{20 x^2}}-4 x\right )^2-2 e^{6 x} x+e^{6 x} x^2-\frac {1}{5} \int \frac {e^{\frac {e^{e^2}+60 x^3}{20 x^2}} \left (e^{e^2}-e^{e^2} x-20 x^3+30 x^4\right )}{x^3} \, dx+\frac {1}{3} \int e^{6 x} \, dx-4 \int \left (4 e^{3 x}-11 e^{3 x} x+6 e^{3 x} x^2\right ) \, dx\\ &=e^{6 x}+\left (6-e^{\frac {e^{e^2}}{20 x^2}}-4 x\right )^2-2 e^{6 x} x+e^{6 x} x^2-\frac {1}{5} \int \left (-20 e^{\frac {e^{e^2}+60 x^3}{20 x^2}}+\frac {e^{e^2+\frac {e^{e^2}+60 x^3}{20 x^2}}}{x^3}-\frac {e^{e^2+\frac {e^{e^2}+60 x^3}{20 x^2}}}{x^2}+30 e^{\frac {e^{e^2}+60 x^3}{20 x^2}} x\right ) \, dx-16 \int e^{3 x} \, dx-24 \int e^{3 x} x^2 \, dx+44 \int e^{3 x} x \, dx\\ &=-\frac {16 e^{3 x}}{3}+e^{6 x}+\left (6-e^{\frac {e^{e^2}}{20 x^2}}-4 x\right )^2+\frac {44}{3} e^{3 x} x-2 e^{6 x} x-8 e^{3 x} x^2+e^{6 x} x^2-\frac {1}{5} \int \frac {e^{e^2+\frac {e^{e^2}+60 x^3}{20 x^2}}}{x^3} \, dx+\frac {1}{5} \int \frac {e^{e^2+\frac {e^{e^2}+60 x^3}{20 x^2}}}{x^2} \, dx+4 \int e^{\frac {e^{e^2}+60 x^3}{20 x^2}} \, dx-6 \int e^{\frac {e^{e^2}+60 x^3}{20 x^2}} x \, dx-\frac {44}{3} \int e^{3 x} \, dx+16 \int e^{3 x} x \, dx\\ &=-\frac {92 e^{3 x}}{9}+e^{6 x}+\left (6-e^{\frac {e^{e^2}}{20 x^2}}-4 x\right )^2+20 e^{3 x} x-2 e^{6 x} x-8 e^{3 x} x^2+e^{6 x} x^2-\frac {1}{5} \int \frac {e^{e^2+\frac {e^{e^2}+60 x^3}{20 x^2}}}{x^3} \, dx+\frac {1}{5} \int \frac {e^{e^2+\frac {e^{e^2}+60 x^3}{20 x^2}}}{x^2} \, dx+4 \int e^{\frac {e^{e^2}+60 x^3}{20 x^2}} \, dx-\frac {16}{3} \int e^{3 x} \, dx-6 \int e^{\frac {e^{e^2}+60 x^3}{20 x^2}} x \, dx\\ &=-12 e^{3 x}+e^{6 x}+\left (6-e^{\frac {e^{e^2}}{20 x^2}}-4 x\right )^2+20 e^{3 x} x-2 e^{6 x} x-8 e^{3 x} x^2+e^{6 x} x^2-\frac {1}{5} \int \frac {e^{e^2+\frac {e^{e^2}+60 x^3}{20 x^2}}}{x^3} \, dx+\frac {1}{5} \int \frac {e^{e^2+\frac {e^{e^2}+60 x^3}{20 x^2}}}{x^2} \, dx+4 \int e^{\frac {e^{e^2}+60 x^3}{20 x^2}} \, dx-6 \int e^{\frac {e^{e^2}+60 x^3}{20 x^2}} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 1.76, size = 91, normalized size = 2.94 \begin {gather*} \frac {1}{5} \left (5 e^{\frac {e^{e^2}}{10 x^2}}-e^{\frac {e^{e^2}}{20 x^2}} (60-40 x)+5 e^{6 x} (-1+x)^2-240 x+80 x^2-10 e^{3 x} (-1+x) \left (-6+e^{\frac {e^{e^2}}{20 x^2}}+4 x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.74, size = 71, normalized size = 2.29 \begin {gather*} 16 \, x^{2} + {\left (x^{2} - 2 \, x + 1\right )} e^{\left (6 \, x\right )} - 4 \, {\left (2 \, x^{2} - 5 \, x + 3\right )} e^{\left (3 \, x\right )} - 2 \, {\left ({\left (x - 1\right )} e^{\left (3 \, x\right )} - 4 \, x + 6\right )} e^{\left (\frac {e^{\left (e^{2}\right )}}{20 \, x^{2}}\right )} - 48 \, x + e^{\left (\frac {e^{\left (e^{2}\right )}}{10 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {160 \, x^{4} - 240 \, x^{3} + 10 \, {\left (3 \, x^{5} - 5 \, x^{4} + 2 \, x^{3}\right )} e^{\left (6 \, x\right )} - 20 \, {\left (6 \, x^{5} - 11 \, x^{4} + 4 \, x^{3}\right )} e^{\left (3 \, x\right )} + {\left (40 \, x^{3} - 10 \, {\left (3 \, x^{4} - 2 \, x^{3}\right )} e^{\left (3 \, x\right )} + {\left ({\left (x - 1\right )} e^{\left (3 \, x\right )} - 4 \, x + 6\right )} e^{\left (e^{2}\right )}\right )} e^{\left (\frac {e^{\left (e^{2}\right )}}{20 \, x^{2}}\right )} - e^{\left (\frac {e^{\left (e^{2}\right )}}{10 \, x^{2}} + e^{2}\right )}}{5 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.14, size = 80, normalized size = 2.58
method | result | size |
risch | \(16 x^{2}-48 x +\frac {\left (5 x^{2}-10 x +5\right ) {\mathrm e}^{6 x}}{5}+\frac {\left (-40 x^{2}+100 x -60\right ) {\mathrm e}^{3 x}}{5}+{\mathrm e}^{\frac {{\mathrm e}^{{\mathrm e}^{2}}}{10 x^{2}}}+\frac {\left (-10 x \,{\mathrm e}^{3 x}+40 x +10 \,{\mathrm e}^{3 x}-60\right ) {\mathrm e}^{\frac {{\mathrm e}^{{\mathrm e}^{2}}}{20 x^{2}}}}{5}\) | \(80\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.83, size = 181, normalized size = 5.84 \begin {gather*} 2 \, \sqrt {\frac {1}{5}} x \sqrt {-\frac {e^{\left (e^{2}\right )}}{x^{2}}} \Gamma \left (-\frac {1}{2}, -\frac {e^{\left (e^{2}\right )}}{20 \, x^{2}}\right ) + 16 \, x^{2} + \frac {1}{18} \, {\left (18 \, x^{2} - 6 \, x + 1\right )} e^{\left (6 \, x\right )} - \frac {5}{18} \, {\left (6 \, x - 1\right )} e^{\left (6 \, x\right )} - \frac {8}{9} \, {\left (9 \, x^{2} - 6 \, x + 2\right )} e^{\left (3 \, x\right )} + \frac {44}{9} \, {\left (3 \, x - 1\right )} e^{\left (3 \, x\right )} - 2 \, {\left (x - 1\right )} e^{\left (3 \, x + \frac {e^{\left (e^{2}\right )}}{20 \, x^{2}}\right )} + \frac {4 \, \sqrt {\frac {1}{5}} \sqrt {\pi } {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {\frac {1}{5}} \sqrt {-\frac {e^{\left (e^{2}\right )}}{x^{2}}}\right ) - 1\right )} e^{\left (e^{2}\right )}}{x \sqrt {-\frac {e^{\left (e^{2}\right )}}{x^{2}}}} - 48 \, x + \frac {2}{3} \, e^{\left (6 \, x\right )} - \frac {16}{3} \, e^{\left (3 \, x\right )} + e^{\left (\frac {e^{\left (e^{2}\right )}}{10 \, x^{2}}\right )} - 12 \, e^{\left (\frac {e^{\left (e^{2}\right )}}{20 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {\frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^{{\mathrm {e}}^2}}{10\,x^2}}\,{\mathrm {e}}^{{\mathrm {e}}^2}}{5}-\frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^{{\mathrm {e}}^2}}{20\,x^2}}\,\left ({\mathrm {e}}^{3\,x}\,\left (20\,x^3-30\,x^4\right )+{\mathrm {e}}^{{\mathrm {e}}^2}\,\left ({\mathrm {e}}^{3\,x}\,\left (x-1\right )-4\,x+6\right )+40\,x^3\right )}{5}-\frac {{\mathrm {e}}^{6\,x}\,\left (30\,x^5-50\,x^4+20\,x^3\right )}{5}+\frac {{\mathrm {e}}^{3\,x}\,\left (120\,x^5-220\,x^4+80\,x^3\right )}{5}+48\,x^3-32\,x^4}{x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 7.67, size = 80, normalized size = 2.58 \begin {gather*} 16 x^{2} - 48 x + \left (- 8 x^{2} + 20 x - 12\right ) e^{3 x} + \left (x^{2} - 2 x + 1\right ) e^{6 x} + \left (- 2 x e^{3 x} + 8 x + 2 e^{3 x} - 12\right ) e^{\frac {e^{e^{2}}}{20 x^{2}}} + e^{\frac {e^{e^{2}}}{10 x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________