Optimal. Leaf size=33 \[ e^{5+e^{x \left (-1+\frac {6}{-5+x}-x^2-\left (-x+x^2\right )^2\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 28.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (5+e^{\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}}+\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}\right ) \left (-55+10 x-151 x^2+260 x^3-211 x^4+58 x^5-5 x^6\right )}{25-10 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (5+e^{\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}}+\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}\right ) \left (-55+10 x-151 x^2+260 x^3-211 x^4+58 x^5-5 x^6\right )}{(-5+x)^2} \, dx\\ &=\int \left (-\exp \left (5+e^{\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}}+\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}\right )-\frac {30 \exp \left (5+e^{\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}}+\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}\right )}{(-5+x)^2}-6 \exp \left (5+e^{\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}}+\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}\right ) x^2+8 \exp \left (5+e^{\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}}+\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}\right ) x^3-5 \exp \left (5+e^{\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}}+\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}\right ) x^4\right ) \, dx\\ &=-\left (5 \int \exp \left (5+e^{\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}}+\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}\right ) x^4 \, dx\right )-6 \int \exp \left (5+e^{\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}}+\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}\right ) x^2 \, dx+8 \int \exp \left (5+e^{\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}}+\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}\right ) x^3 \, dx-30 \int \frac {\exp \left (5+e^{\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}}+\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}\right )}{(-5+x)^2} \, dx-\int \exp \left (5+e^{\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}}+\frac {11 x-x^2+10 x^3-12 x^4+7 x^5-x^6}{-5+x}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.57, size = 35, normalized size = 1.06 \begin {gather*} e^{5+e^{-\frac {x \left (-11+x-10 x^2+12 x^3-7 x^4+x^5\right )}{-5+x}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 104, normalized size = 3.15 \begin {gather*} e^{\left (-\frac {x^{6} - 7 \, x^{5} + 12 \, x^{4} - 10 \, x^{3} + x^{2} - {\left (x - 5\right )} e^{\left (-\frac {x^{6} - 7 \, x^{5} + 12 \, x^{4} - 10 \, x^{3} + x^{2} - 11 \, x}{x - 5}\right )} - 16 \, x + 25}{x - 5} + \frac {x^{6} - 7 \, x^{5} + 12 \, x^{4} - 10 \, x^{3} + x^{2} - 11 \, x}{x - 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (5 \, x^{6} - 58 \, x^{5} + 211 \, x^{4} - 260 \, x^{3} + 151 \, x^{2} - 10 \, x + 55\right )} e^{\left (-\frac {x^{6} - 7 \, x^{5} + 12 \, x^{4} - 10 \, x^{3} + x^{2} - 11 \, x}{x - 5} + e^{\left (-\frac {x^{6} - 7 \, x^{5} + 12 \, x^{4} - 10 \, x^{3} + x^{2} - 11 \, x}{x - 5}\right )} + 5\right )}}{x^{2} - 10 \, x + 25}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.32, size = 34, normalized size = 1.03
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{-\frac {x \left (x^{5}-7 x^{4}+12 x^{3}-10 x^{2}+x -11\right )}{x -5}}+5}\) | \(34\) |
norman | \(\frac {x \,{\mathrm e}^{{\mathrm e}^{\frac {-x^{6}+7 x^{5}-12 x^{4}+10 x^{3}-x^{2}+11 x}{x -5}}+5}-5 \,{\mathrm e}^{{\mathrm e}^{\frac {-x^{6}+7 x^{5}-12 x^{4}+10 x^{3}-x^{2}+11 x}{x -5}}+5}}{x -5}\) | \(90\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.42, size = 31, normalized size = 0.94 \begin {gather*} e^{\left (e^{\left (-x^{5} + 2 \, x^{4} - 2 \, x^{3} - x + \frac {30}{x - 5} + 6\right )} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.29, size = 69, normalized size = 2.09 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{\frac {11\,x}{x-5}}\,{\mathrm {e}}^{-\frac {x^2}{x-5}}\,{\mathrm {e}}^{-\frac {x^6}{x-5}}\,{\mathrm {e}}^{\frac {7\,x^5}{x-5}}\,{\mathrm {e}}^{\frac {10\,x^3}{x-5}}\,{\mathrm {e}}^{-\frac {12\,x^4}{x-5}}}\,{\mathrm {e}}^5 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.62, size = 32, normalized size = 0.97 \begin {gather*} e^{e^{\frac {- x^{6} + 7 x^{5} - 12 x^{4} + 10 x^{3} - x^{2} + 11 x}{x - 5}} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________