Optimal. Leaf size=35 \[ x^2 \left (e^{\frac {e^2}{x}+(x+\log (5))^2}-x+\left (1+\frac {1}{x}\right ) x^2\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.34, antiderivative size = 187, normalized size of antiderivative = 5.34, number of steps used = 3, number of rules used = 1, integrand size = 108, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.009, Rules used = {2288} \begin {gather*} x^6-\frac {5^{4 x} e^{\frac {2 \left (x^3+x \log ^2(5)+e^2\right )}{x}} \left (-2 x^3-2 x^2 \log (5)+e^2\right )}{\frac {3 x^2+4 x \log (5)+\log ^2(5)}{x}-\frac {x^3+2 x^2 \log (5)+x \log ^2(5)+e^2}{x^2}}-\frac {2\ 5^{2 x} e^{\frac {x^3+x \log ^2(5)+e^2}{x}} \left (-2 x^5-2 x^4 \log (5)+e^2 x^2\right )}{\frac {3 x^2+4 x \log (5)+\log ^2(5)}{x}-\frac {x^3+2 x^2 \log (5)+x \log ^2(5)+e^2}{x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x^6+\int e^{\frac {2 \left (e^2+x^3+2 x^2 \log (5)+x \log ^2(5)\right )}{x}} \left (-2 e^2+2 x+4 x^3+4 x^2 \log (5)\right ) \, dx+\int e^{\frac {e^2+x^3+2 x^2 \log (5)+x \log ^2(5)}{x}} \left (-2 e^2 x^2+8 x^3+4 x^5+4 x^4 \log (5)\right ) \, dx\\ &=x^6-\frac {5^{4 x} e^{\frac {2 \left (e^2+x^3+x \log ^2(5)\right )}{x}} \left (e^2-2 x^3-2 x^2 \log (5)\right )}{\frac {3 x^2+4 x \log (5)+\log ^2(5)}{x}-\frac {e^2+x^3+2 x^2 \log (5)+x \log ^2(5)}{x^2}}-\frac {2\ 5^{2 x} e^{\frac {e^2+x^3+x \log ^2(5)}{x}} \left (e^2 x^2-2 x^5-2 x^4 \log (5)\right )}{\frac {3 x^2+4 x \log (5)+\log ^2(5)}{x}-\frac {e^2+x^3+2 x^2 \log (5)+x \log ^2(5)}{x^2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 69, normalized size = 1.97 \begin {gather*} x^6+\frac {4\ 25^x e^{\frac {e^2}{x}+x^2+\log ^2(5)} x^4 \log (5)}{\log (25)}+\frac {2\ 625^x e^{\frac {2 \left (e^2+x^3+x \log ^2(5)\right )}{x}} x^2 \log (25)}{\log (625)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 62, normalized size = 1.77 \begin {gather*} x^{6} + 2 \, x^{4} e^{\left (\frac {x^{3} + 2 \, x^{2} \log \relax (5) + x \log \relax (5)^{2} + e^{2}}{x}\right )} + x^{2} e^{\left (\frac {2 \, {\left (x^{3} + 2 \, x^{2} \log \relax (5) + x \log \relax (5)^{2} + e^{2}\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.40, size = 62, normalized size = 1.77 \begin {gather*} x^{6} + 2 \, x^{4} e^{\left (\frac {x^{3} + 2 \, x^{2} \log \relax (5) + x \log \relax (5)^{2} + e^{2}}{x}\right )} + x^{2} e^{\left (\frac {2 \, {\left (x^{3} + 2 \, x^{2} \log \relax (5) + x \log \relax (5)^{2} + e^{2}\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 57, normalized size = 1.63
method | result | size |
risch | \(25^{2 x} {\mathrm e}^{\frac {2 x \ln \relax (5)^{2}+2 x^{3}+2 \,{\mathrm e}^{2}}{x}} x^{2}+2 \,25^{x} {\mathrm e}^{\frac {x \ln \relax (5)^{2}+x^{3}+{\mathrm e}^{2}}{x}} x^{4}+x^{6}\) | \(57\) |
default | \({\mathrm e}^{\frac {2 x \ln \relax (5)^{2}+2 x^{2} \ln \left (25\right )+2 \,{\mathrm e}^{2}+2 x^{3}}{x}} x^{2}+2 \,{\mathrm e}^{\frac {x \ln \relax (5)^{2}+2 x^{2} \ln \relax (5)+{\mathrm e}^{2}+x^{3}}{x}} x^{4}+x^{6}\) | \(64\) |
norman | \({\mathrm e}^{\frac {2 x \ln \relax (5)^{2}+2 x^{2} \ln \left (25\right )+2 \,{\mathrm e}^{2}+2 x^{3}}{x}} x^{2}+2 \,{\mathrm e}^{\frac {x \ln \relax (5)^{2}+2 x^{2} \ln \relax (5)+{\mathrm e}^{2}+x^{3}}{x}} x^{4}+x^{6}\) | \(64\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.04, size = 58, normalized size = 1.66 \begin {gather*} x^{6} + 2 \, x^{4} e^{\left (x^{2} + 2 \, x \log \relax (5) + \log \relax (5)^{2} + \frac {e^{2}}{x}\right )} + x^{2} e^{\left (2 \, x^{2} + 4 \, x \log \relax (5) + 2 \, \log \relax (5)^{2} + \frac {2 \, e^{2}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.19, size = 31, normalized size = 0.89 \begin {gather*} x^2\,{\left (5^{2\,x}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^2}{x}+{\ln \relax (5)}^2+x^2}+x^2\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.24, size = 66, normalized size = 1.89 \begin {gather*} x^{6} + 2 x^{4} e^{\frac {x^{3} + 2 x^{2} \log {\relax (5 )} + x \log {\relax (5 )}^{2} + e^{2}}{x}} + x^{2} e^{\frac {2 \left (x^{3} + 2 x^{2} \log {\relax (5 )} + x \log {\relax (5 )}^{2} + e^{2}\right )}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________