Optimal. Leaf size=28 \[ 2 x \log \left (\frac {4 \left (-3+\frac {x^2}{4}\right )}{e^2 \left (2 x+\log \left (\frac {5}{2}\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.70, antiderivative size = 27, normalized size of antiderivative = 0.96, number of steps used = 13, number of rules used = 7, integrand size = 86, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {6741, 6688, 12, 6725, 1629, 207, 2523} \begin {gather*} 2 x \log \left (-\frac {12-x^2}{2 x+\log \left (\frac {5}{2}\right )}\right )-4 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 207
Rule 1629
Rule 2523
Rule 6688
Rule 6725
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-48 x-4 x^3-4 x^2 \log \left (\frac {5}{2}\right )-\left (-48 x+4 x^3+\left (-24+2 x^2\right ) \log \left (\frac {5}{2}\right )\right ) \log \left (\frac {-12+x^2}{2 e^2 x+e^2 \log \left (\frac {5}{2}\right )}\right )}{24 x-2 x^3+12 \log \left (\frac {5}{2}\right )-x^2 \log \left (\frac {5}{2}\right )} \, dx\\ &=\int \frac {2 \left (-72 x+2 x^3-24 \log \left (\frac {5}{2}\right )-\left (-12+x^2\right ) \left (2 x+\log \left (\frac {5}{2}\right )\right ) \log \left (\frac {-12+x^2}{2 x+\log \left (\frac {5}{2}\right )}\right )\right )}{\left (12-x^2\right ) \left (2 x+\log \left (\frac {5}{2}\right )\right )} \, dx\\ &=2 \int \frac {-72 x+2 x^3-24 \log \left (\frac {5}{2}\right )-\left (-12+x^2\right ) \left (2 x+\log \left (\frac {5}{2}\right )\right ) \log \left (\frac {-12+x^2}{2 x+\log \left (\frac {5}{2}\right )}\right )}{\left (12-x^2\right ) \left (2 x+\log \left (\frac {5}{2}\right )\right )} \, dx\\ &=2 \int \left (-\frac {2 \left (-36 x+x^3-12 \log \left (\frac {5}{2}\right )\right )}{\left (-12+x^2\right ) \left (2 x+\log \left (\frac {5}{2}\right )\right )}+\log \left (\frac {-12+x^2}{2 x+\log \left (\frac {5}{2}\right )}\right )\right ) \, dx\\ &=2 \int \log \left (\frac {-12+x^2}{2 x+\log \left (\frac {5}{2}\right )}\right ) \, dx-4 \int \frac {-36 x+x^3-12 \log \left (\frac {5}{2}\right )}{\left (-12+x^2\right ) \left (2 x+\log \left (\frac {5}{2}\right )\right )} \, dx\\ &=2 x \log \left (-\frac {12-x^2}{2 x+\log \left (\frac {5}{2}\right )}\right )-2 \int \frac {2 x \left (-12-x^2-x \log \left (\frac {5}{2}\right )\right )}{\left (12-x^2\right ) \left (2 x+\log \left (\frac {5}{2}\right )\right )} \, dx-4 \int \left (\frac {1}{2}-\frac {12}{-12+x^2}-\frac {\log \left (\frac {5}{2}\right )}{4 x+\log \left (\frac {25}{4}\right )}\right ) \, dx\\ &=-2 x+2 x \log \left (-\frac {12-x^2}{2 x+\log \left (\frac {5}{2}\right )}\right )+\log \left (\frac {5}{2}\right ) \log \left (4 x+\log \left (\frac {25}{4}\right )\right )-4 \int \frac {x \left (-12-x^2-x \log \left (\frac {5}{2}\right )\right )}{\left (12-x^2\right ) \left (2 x+\log \left (\frac {5}{2}\right )\right )} \, dx+48 \int \frac {1}{-12+x^2} \, dx\\ &=-2 x-8 \sqrt {3} \tanh ^{-1}\left (\frac {x}{2 \sqrt {3}}\right )+2 x \log \left (-\frac {12-x^2}{2 x+\log \left (\frac {5}{2}\right )}\right )+\log \left (\frac {5}{2}\right ) \log \left (4 x+\log \left (\frac {25}{4}\right )\right )-4 \int \left (\frac {1}{2}+\frac {12}{-12+x^2}+\frac {\log \left (\frac {5}{2}\right )}{4 x+\log \left (\frac {25}{4}\right )}\right ) \, dx\\ &=-4 x-8 \sqrt {3} \tanh ^{-1}\left (\frac {x}{2 \sqrt {3}}\right )+2 x \log \left (-\frac {12-x^2}{2 x+\log \left (\frac {5}{2}\right )}\right )-48 \int \frac {1}{-12+x^2} \, dx\\ &=-4 x+2 x \log \left (-\frac {12-x^2}{2 x+\log \left (\frac {5}{2}\right )}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 59, normalized size = 2.11 \begin {gather*} 2 \left (-2 x+x \log \left (\frac {-12+x^2}{2 x+\log \left (\frac {5}{2}\right )}\right )+\frac {1}{2} \log \left (\frac {5}{2}\right ) \log \left (2 x+\log \left (\frac {5}{2}\right )\right )-\frac {1}{2} \log \left (\frac {5}{2}\right ) \log \left (4 x+\log \left (\frac {25}{4}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 23, normalized size = 0.82 \begin {gather*} 2 \, x \log \left (\frac {x^{2} - 12}{2 \, x e^{2} + e^{2} \log \left (\frac {5}{2}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 53, normalized size = 1.89 \begin {gather*} 2 \, x \log \left (x^{2} - 12\right ) + {\left (\log \relax (5) - \log \relax (2)\right )} \log \left (2 \, x + \log \relax (5) - \log \relax (2)\right ) - 2 \, x \log \left (2 \, x + \log \left (\frac {5}{2}\right )\right ) - \log \left (\frac {5}{2}\right ) \log \left (2 \, x + \log \left (\frac {5}{2}\right )\right ) - 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 24, normalized size = 0.86
method | result | size |
norman | \(2 x \ln \left (\frac {x^{2}-12}{{\mathrm e}^{2} \ln \left (\frac {5}{2}\right )+2 \,{\mathrm e}^{2} x}\right )\) | \(24\) |
risch | \(2 x \ln \left (\frac {x^{2}-12}{{\mathrm e}^{2} \left (\ln \relax (5)-\ln \relax (2)\right )+2 \,{\mathrm e}^{2} x}\right )\) | \(29\) |
default | \(-4 x +\ln \left (-\ln \relax (2)+\ln \relax (5)+2 x \right ) \ln \relax (5)-\ln \left (-\ln \relax (2)+\ln \relax (5)+2 x \right ) \ln \relax (2)+2 x \ln \left (\frac {x^{2}-12}{\ln \left (\frac {5}{2}\right )+2 x}\right )-\ln \left (\frac {5}{2}\right ) \ln \left (\ln \left (\frac {5}{2}\right )+2 x \right )\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.05, size = 233, normalized size = 8.32 \begin {gather*} -\frac {\log \left (\frac {5}{2}\right )^{3} \log \left (2 \, x + \log \left (\frac {5}{2}\right )\right )}{\log \left (\frac {5}{2}\right )^{2} - 48} + 2 \, {\left (\frac {\log \left (\frac {5}{2}\right )^{2} \log \left (2 \, x + \log \left (\frac {5}{2}\right )\right )}{\log \left (\frac {5}{2}\right )^{2} - 48} + \frac {2 \, \sqrt {3} \log \left (\frac {5}{2}\right ) \log \left (\frac {x - 2 \, \sqrt {3}}{x + 2 \, \sqrt {3}}\right )}{\log \left (\frac {5}{2}\right )^{2} - 48} - \frac {24 \, \log \left (x^{2} - 12\right )}{\log \left (\frac {5}{2}\right )^{2} - 48}\right )} \log \left (\frac {5}{2}\right ) + 2 \, x \log \left (x^{2} - 12\right ) - 2 \, x \log \left (2 \, x + \log \relax (5) - \log \relax (2)\right ) - {\left (\log \relax (5) - \log \relax (2)\right )} \log \left (2 \, x + \log \relax (5) - \log \relax (2)\right ) - 4 \, \sqrt {3} \log \left (\frac {x - 2 \, \sqrt {3}}{x + 2 \, \sqrt {3}}\right ) - 4 \, x + \frac {48 \, \log \left (\frac {5}{2}\right ) \log \left (x^{2} - 12\right )}{\log \left (\frac {5}{2}\right )^{2} - 48} - \frac {48 \, \log \left (\frac {5}{2}\right ) \log \left (2 \, x + \log \left (\frac {5}{2}\right )\right )}{\log \left (\frac {5}{2}\right )^{2} - 48} - \frac {192 \, \sqrt {3} \log \left (\frac {x - 2 \, \sqrt {3}}{x + 2 \, \sqrt {3}}\right )}{\log \left (\frac {5}{2}\right )^{2} - 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \text {Hanged} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 24, normalized size = 0.86 \begin {gather*} 2 x \log {\left (\frac {x^{2} - 12}{2 x e^{2} + e^{2} \log {\left (\frac {5}{2} \right )}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________