Optimal. Leaf size=28 \[ \frac {3}{1+\frac {1}{8} e^{\frac {1}{5} e^{32} (1-\log (2))^2} x} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 44, normalized size of antiderivative = 1.57, number of steps used = 4, number of rules used = 3, integrand size = 88, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {12, 27, 32} \begin {gather*} \frac {3\ 2^{3+\frac {2 e^{32}}{5}}}{x e^{\frac {1}{5} e^{32} \left (1+\log ^2(2)\right )}+2^{3+\frac {2 e^{32}}{5}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 32
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (\left (3\ 2^{3-\frac {2 e^{32}}{5}} e^{\frac {1}{5} e^{32} \left (1+\log ^2(2)\right )}\right ) \int \frac {1}{64+16 e^{\frac {1}{5} \left (e^{32}-2 e^{32} \log (2)+e^{32} \log ^2(2)\right )} x+e^{\frac {2}{5} \left (e^{32}-2 e^{32} \log (2)+e^{32} \log ^2(2)\right )} x^2} \, dx\right )\\ &=-\left (\left (3\ 2^{3-\frac {2 e^{32}}{5}} e^{\frac {1}{5} e^{32} \left (1+\log ^2(2)\right )}\right ) \int \frac {2^{\frac {4 e^{32}}{5}}}{\left (2^{3+\frac {2 e^{32}}{5}}+e^{\frac {e^{32}}{5}+\frac {1}{5} e^{32} \log ^2(2)} x\right )^2} \, dx\right )\\ &=-\left (\left (3\ 2^{3+\frac {2 e^{32}}{5}} e^{\frac {1}{5} e^{32} \left (1+\log ^2(2)\right )}\right ) \int \frac {1}{\left (2^{3+\frac {2 e^{32}}{5}}+e^{\frac {e^{32}}{5}+\frac {1}{5} e^{32} \log ^2(2)} x\right )^2} \, dx\right )\\ &=\frac {3\ 2^{3+\frac {2 e^{32}}{5}}}{2^{3+\frac {2 e^{32}}{5}}+e^{\frac {1}{5} e^{32} \left (1+\log ^2(2)\right )} x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 44, normalized size = 1.57 \begin {gather*} \frac {3\ 2^{3+\frac {2 e^{32}}{5}}}{2^{3+\frac {2 e^{32}}{5}}+e^{\frac {1}{5} e^{32} \left (1+\log ^2(2)\right )} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 28, normalized size = 1.00 \begin {gather*} \frac {24}{x e^{\left (\frac {1}{5} \, e^{32} \log \relax (2)^{2} - \frac {2}{5} \, e^{32} \log \relax (2) + \frac {1}{5} \, e^{32}\right )} + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 35, normalized size = 1.25
method | result | size |
gosper | \(\frac {24}{x \,{\mathrm e}^{\frac {{\mathrm e}^{32} \ln \relax (2)^{2}}{5}-\frac {2 \,{\mathrm e}^{32} \ln \relax (2)}{5}+\frac {{\mathrm e}^{32}}{5}}+8}\) | \(35\) |
risch | \(\frac {24 \,2^{\frac {2 \,{\mathrm e}^{32}}{5}} {\mathrm e}^{-\frac {{\mathrm e}^{32} \left (\ln \relax (2)^{2}+1\right )}{5}}}{8 \,2^{\frac {2 \,{\mathrm e}^{32}}{5}} {\mathrm e}^{-\frac {{\mathrm e}^{32} \left (\ln \relax (2)^{2}+1\right )}{5}}+x}\) | \(43\) |
meijerg | \(-\frac {3 \,{\mathrm e}^{\frac {{\mathrm e}^{32} \ln \relax (2)^{2}}{5}-\frac {2 \,{\mathrm e}^{32} \ln \relax (2)}{5}+\frac {{\mathrm e}^{32}}{5}} x}{8 \left (1+2^{-3-\frac {2 \,{\mathrm e}^{32}}{5}} x \,{\mathrm e}^{\frac {{\mathrm e}^{32} \ln \relax (2)^{2}}{5}+\frac {{\mathrm e}^{32}}{5}}\right )}\) | \(52\) |
norman | \(-\frac {3 \,{\mathrm e}^{\frac {{\mathrm e}^{32} \ln \relax (2)^{2}}{5}} 2^{-\frac {2 \,{\mathrm e}^{32}}{5}} {\mathrm e}^{\frac {{\mathrm e}^{32}}{5}} x}{x \,{\mathrm e}^{\frac {{\mathrm e}^{32} \ln \relax (2)^{2}}{5}-\frac {2 \,{\mathrm e}^{32} \ln \relax (2)}{5}+\frac {{\mathrm e}^{32}}{5}}+8}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 63, normalized size = 2.25 \begin {gather*} \frac {24 \, e^{\left (\frac {1}{5} \, e^{32} \log \relax (2)^{2} + \frac {2}{5} \, e^{32} \log \relax (2) + \frac {1}{5} \, e^{32}\right )}}{x e^{\left (\frac {2}{5} \, e^{32} \log \relax (2)^{2} + \frac {2}{5} \, e^{32}\right )} + 8 \, e^{\left (\frac {1}{5} \, e^{32} \log \relax (2)^{2} + \frac {2}{5} \, e^{32} \log \relax (2) + \frac {1}{5} \, e^{32}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.21, size = 1, normalized size = 0.04 \begin {gather*} \mathrm {NaN} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.23, size = 80, normalized size = 2.86 \begin {gather*} \frac {24 \cdot 2^{\frac {2 e^{32}}{5}} e^{\frac {e^{32} \log {\relax (2 )}^{2}}{5}} e^{\frac {e^{32}}{5}}}{x e^{\frac {2 e^{32} \log {\relax (2 )}^{2}}{5}} e^{\frac {2 e^{32}}{5}} + 8 \cdot 2^{\frac {2 e^{32}}{5}} e^{\frac {e^{32} \log {\relax (2 )}^{2}}{5}} e^{\frac {e^{32}}{5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________