Optimal. Leaf size=33 \[ e^{\frac {e^{-x} \left (3+\frac {4}{x^2}-x\right )}{12 e^{-x}+2 e^x}} \]
________________________________________________________________________________________
Rubi [F] time = 9.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {4+3 x^2-x^3}{12 x^2+2 e^{2 x} x^2}} \left (-48-6 x^3+e^{2 x} \left (-8-8 x-7 x^3+2 x^4\right )\right )}{72 x^3+24 e^{2 x} x^3+2 e^{4 x} x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}} \left (-48-6 x^3+e^{2 x} \left (-8-8 x-7 x^3+2 x^4\right )\right )}{2 \left (6+e^{2 x}\right )^2 x^3} \, dx\\ &=\frac {1}{2} \int \frac {e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}} \left (-48-6 x^3+e^{2 x} \left (-8-8 x-7 x^3+2 x^4\right )\right )}{\left (6+e^{2 x}\right )^2 x^3} \, dx\\ &=\frac {1}{2} \int \left (-\frac {12 e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}} \left (-4-3 x^2+x^3\right )}{\left (6+e^{2 x}\right )^2 x^2}+\frac {e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}} \left (-8-8 x-7 x^3+2 x^4\right )}{\left (6+e^{2 x}\right ) x^3}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}} \left (-8-8 x-7 x^3+2 x^4\right )}{\left (6+e^{2 x}\right ) x^3} \, dx-6 \int \frac {e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}} \left (-4-3 x^2+x^3\right )}{\left (6+e^{2 x}\right )^2 x^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {7 e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}}}{6+e^{2 x}}-\frac {8 e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}}}{\left (6+e^{2 x}\right ) x^3}-\frac {8 e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}}}{\left (6+e^{2 x}\right ) x^2}+\frac {2 e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}} x}{6+e^{2 x}}\right ) \, dx-6 \int \left (-\frac {3 e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}}}{\left (6+e^{2 x}\right )^2}-\frac {4 e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}}}{\left (6+e^{2 x}\right )^2 x^2}+\frac {e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}} x}{\left (6+e^{2 x}\right )^2}\right ) \, dx\\ &=-\left (\frac {7}{2} \int \frac {e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}}}{6+e^{2 x}} \, dx\right )-4 \int \frac {e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}}}{\left (6+e^{2 x}\right ) x^3} \, dx-4 \int \frac {e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}}}{\left (6+e^{2 x}\right ) x^2} \, dx-6 \int \frac {e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}} x}{\left (6+e^{2 x}\right )^2} \, dx+18 \int \frac {e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}}}{\left (6+e^{2 x}\right )^2} \, dx+24 \int \frac {e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}}}{\left (6+e^{2 x}\right )^2 x^2} \, dx+\int \frac {e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}} x}{6+e^{2 x}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.12, size = 30, normalized size = 0.91 \begin {gather*} e^{\frac {4+3 x^2-x^3}{2 \left (6+e^{2 x}\right ) x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 29, normalized size = 0.88 \begin {gather*} e^{\left (-\frac {x^{3} - 3 \, x^{2} - 4}{2 \, {\left (x^{2} e^{\left (2 \, x\right )} + 6 \, x^{2}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 25, normalized size = 0.76
method | result | size |
risch | \({\mathrm e}^{-\frac {x^{3}-3 x^{2}-4}{2 x^{2} \left ({\mathrm e}^{2 x}+6\right )}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 41, normalized size = 1.24 \begin {gather*} e^{\left (-\frac {x}{2 \, {\left (e^{\left (2 \, x\right )} + 6\right )}} + \frac {2}{x^{2} e^{\left (2 \, x\right )} + 6 \, x^{2}} + \frac {3}{2 \, {\left (e^{\left (2 \, x\right )} + 6\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.18, size = 47, normalized size = 1.42 \begin {gather*} {\mathrm {e}}^{\frac {3}{2\,{\mathrm {e}}^{2\,x}+12}}\,{\mathrm {e}}^{\frac {2}{x^2\,{\mathrm {e}}^{2\,x}+6\,x^2}}\,{\mathrm {e}}^{-\frac {x}{2\,{\mathrm {e}}^{2\,x}+12}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 26, normalized size = 0.79 \begin {gather*} e^{\frac {- x^{3} + 3 x^{2} + 4}{2 x^{2} e^{2 x} + 12 x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________