Optimal. Leaf size=29 \[ \log \left (e^{x/4}+\frac {x}{\log \left (\frac {5}{x^2}\right )}+\left (-1+\log \left (\frac {x}{3}\right )\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 17.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {8 x+4 x \log \left (\frac {5}{x^2}\right )+\left (-8+e^{x/4} x\right ) \log ^2\left (\frac {5}{x^2}\right )+8 \log ^2\left (\frac {5}{x^2}\right ) \log \left (\frac {x}{3}\right )}{4 x^2 \log \left (\frac {5}{x^2}\right )+\left (4 x+4 e^{x/4} x\right ) \log ^2\left (\frac {5}{x^2}\right )-8 x \log ^2\left (\frac {5}{x^2}\right ) \log \left (\frac {x}{3}\right )+4 x \log ^2\left (\frac {5}{x^2}\right ) \log ^2\left (\frac {x}{3}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 x+4 x \log \left (\frac {5}{x^2}\right )+\log ^2\left (\frac {5}{x^2}\right ) \left (-8+e^{x/4} x+8 \log \left (\frac {x}{3}\right )\right )}{4 x \log \left (\frac {5}{x^2}\right ) \left (x+\log \left (\frac {5}{x^2}\right ) \left (1+e^{x/4}+\log (9)+\log ^2\left (\frac {x}{3}\right )-2 \log (x)\right )\right )} \, dx\\ &=\frac {1}{4} \int \frac {8 x+4 x \log \left (\frac {5}{x^2}\right )+\log ^2\left (\frac {5}{x^2}\right ) \left (-8+e^{x/4} x+8 \log \left (\frac {x}{3}\right )\right )}{x \log \left (\frac {5}{x^2}\right ) \left (x+\log \left (\frac {5}{x^2}\right ) \left (1+e^{x/4}+\log (9)+\log ^2\left (\frac {x}{3}\right )-2 \log (x)\right )\right )} \, dx\\ &=\frac {1}{4} \int \left (1+\frac {8 x+4 x \log \left (\frac {5}{x^2}\right )-x^2 \log \left (\frac {5}{x^2}\right )-8 \log ^2\left (\frac {5}{x^2}\right )-x (1+\log (9)) \log ^2\left (\frac {5}{x^2}\right )+8 \log ^2\left (\frac {5}{x^2}\right ) \log \left (\frac {x}{3}\right )-x \log ^2\left (\frac {5}{x^2}\right ) \log ^2\left (\frac {x}{3}\right )+2 x \log ^2\left (\frac {5}{x^2}\right ) \log (x)}{x \log \left (\frac {5}{x^2}\right ) \left (x+e^{x/4} \log \left (\frac {5}{x^2}\right )+(1+\log (9)) \log \left (\frac {5}{x^2}\right )+\log \left (\frac {5}{x^2}\right ) \log ^2\left (\frac {x}{3}\right )-2 \log \left (\frac {5}{x^2}\right ) \log (x)\right )}\right ) \, dx\\ &=\frac {x}{4}+\frac {1}{4} \int \frac {8 x+4 x \log \left (\frac {5}{x^2}\right )-x^2 \log \left (\frac {5}{x^2}\right )-8 \log ^2\left (\frac {5}{x^2}\right )-x (1+\log (9)) \log ^2\left (\frac {5}{x^2}\right )+8 \log ^2\left (\frac {5}{x^2}\right ) \log \left (\frac {x}{3}\right )-x \log ^2\left (\frac {5}{x^2}\right ) \log ^2\left (\frac {x}{3}\right )+2 x \log ^2\left (\frac {5}{x^2}\right ) \log (x)}{x \log \left (\frac {5}{x^2}\right ) \left (x+e^{x/4} \log \left (\frac {5}{x^2}\right )+(1+\log (9)) \log \left (\frac {5}{x^2}\right )+\log \left (\frac {5}{x^2}\right ) \log ^2\left (\frac {x}{3}\right )-2 \log \left (\frac {5}{x^2}\right ) \log (x)\right )} \, dx\\ &=\frac {x}{4}+\frac {1}{4} \int \frac {8 x-(-4+x) x \log \left (\frac {5}{x^2}\right )-\log ^2\left (\frac {5}{x^2}\right ) \left (8+x+x \log (9)-8 \log \left (\frac {x}{3}\right )+x \log ^2\left (\frac {x}{3}\right )-2 x \log (x)\right )}{x \log \left (\frac {5}{x^2}\right ) \left (x+\log \left (\frac {5}{x^2}\right ) \left (1+e^{x/4}+\log (9)+\log ^2\left (\frac {x}{3}\right )-2 \log (x)\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 45, normalized size = 1.55 \begin {gather*} -\log \left (\log \left (\frac {5}{x^2}\right )\right )+\log \left (4 \left (x+\log \left (\frac {5}{x^2}\right ) \left (1+e^{x/4}+\log (9)+\log ^2\left (\frac {x}{3}\right )-2 \log (x)\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 60, normalized size = 2.07 \begin {gather*} \log \left (-2 \, {\left (\log \left (\frac {5}{9}\right ) - 2\right )} \log \left (\frac {5}{x^{2}}\right )^{2} + \log \left (\frac {5}{x^{2}}\right )^{3} + {\left (\log \left (\frac {5}{9}\right )^{2} + 4 \, e^{\left (\frac {1}{4} \, x\right )} - 4 \, \log \left (\frac {5}{9}\right ) + 4\right )} \log \left (\frac {5}{x^{2}}\right ) + 4 \, x\right ) - \log \left (\log \left (\frac {5}{x^{2}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.18, size = 103, normalized size = 3.55 \begin {gather*} \log \left (\log \relax (5) \log \relax (3)^{2} - 2 \, \log \relax (5) \log \relax (3) \log \relax (x) - 2 \, \log \relax (3)^{2} \log \relax (x) + \log \relax (5) \log \relax (x)^{2} + 4 \, \log \relax (3) \log \relax (x)^{2} - 2 \, \log \relax (x)^{3} + e^{\left (\frac {1}{4} \, x\right )} \log \relax (5) + 2 \, \log \relax (5) \log \relax (3) - 2 \, e^{\left (\frac {1}{4} \, x\right )} \log \relax (x) - 2 \, \log \relax (5) \log \relax (x) - 4 \, \log \relax (3) \log \relax (x) + 4 \, \log \relax (x)^{2} + x + \log \relax (5) - 2 \, \log \relax (x)\right ) - \log \left (\log \relax (5) - 2 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {8 \ln \left (\frac {5}{x^{2}}\right )^{2} \ln \left (\frac {x}{3}\right )+\left (x \,{\mathrm e}^{\frac {x}{4}}-8\right ) \ln \left (\frac {5}{x^{2}}\right )^{2}+4 x \ln \left (\frac {5}{x^{2}}\right )+8 x}{4 x \ln \left (\frac {5}{x^{2}}\right )^{2} \ln \left (\frac {x}{3}\right )^{2}-8 x \ln \left (\frac {5}{x^{2}}\right )^{2} \ln \left (\frac {x}{3}\right )+\left (4 x \,{\mathrm e}^{\frac {x}{4}}+4 x \right ) \ln \left (\frac {5}{x^{2}}\right )^{2}+4 x^{2} \ln \left (\frac {5}{x^{2}}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.66, size = 78, normalized size = 2.69 \begin {gather*} \log \left (\frac {\log \relax (5) \log \relax (3)^{2} + {\left (\log \relax (5) + 4 \, \log \relax (3) + 4\right )} \log \relax (x)^{2} - 2 \, \log \relax (x)^{3} + {\left (\log \relax (5) - 2 \, \log \relax (x)\right )} e^{\left (\frac {1}{4} \, x\right )} + 2 \, \log \relax (5) \log \relax (3) - 2 \, {\left ({\left (\log \relax (5) + 2\right )} \log \relax (3) + \log \relax (3)^{2} + \log \relax (5) + 1\right )} \log \relax (x) + x + \log \relax (5)}{\log \relax (5) - 2 \, \log \relax (x)}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {8\,x+4\,x\,\ln \left (\frac {5}{x^2}\right )+8\,\ln \left (\frac {x}{3}\right )\,{\ln \left (\frac {5}{x^2}\right )}^2+{\ln \left (\frac {5}{x^2}\right )}^2\,\left (x\,{\mathrm {e}}^{x/4}-8\right )}{{\ln \left (\frac {5}{x^2}\right )}^2\,\left (4\,x+4\,x\,{\mathrm {e}}^{x/4}\right )+4\,x^2\,\ln \left (\frac {5}{x^2}\right )-8\,x\,\ln \left (\frac {x}{3}\right )\,{\ln \left (\frac {5}{x^2}\right )}^2+4\,x\,{\ln \left (\frac {x}{3}\right )}^2\,{\ln \left (\frac {5}{x^2}\right )}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 6.10, size = 97, normalized size = 3.34 \begin {gather*} \log {\left (e^{\frac {x}{4}} + \frac {- x + 2 \log {\left (\frac {x}{3} \right )}^{3} - 4 \log {\left (\frac {x}{3} \right )}^{2} - \log {\relax (5 )} \log {\left (\frac {x}{3} \right )}^{2} + 2 \log {\relax (3 )} \log {\left (\frac {x}{3} \right )}^{2} - 4 \log {\relax (3 )} \log {\left (\frac {x}{3} \right )} + 2 \log {\left (\frac {x}{3} \right )} + 2 \log {\relax (5 )} \log {\left (\frac {x}{3} \right )} - \log {\relax (5 )} + 2 \log {\relax (3 )}}{2 \log {\left (\frac {x}{3} \right )} - \log {\relax (5 )} + 2 \log {\relax (3 )}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________