Optimal. Leaf size=13 \[ 4 \left (630+2 e^{-2+x}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 22, normalized size of antiderivative = 1.69, number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {12, 2248, 37} \begin {gather*} 16 e^{2 x-4} \left (315 e^{2-x}+1\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 37
Rule 2248
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int e^{-4+2 x} \left (128+40320 e^{2-x}\right ) \, dx\\ &=-\left (\frac {1}{4} \operatorname {Subst}\left (\int \frac {128+40320 x}{x^3} \, dx,x,e^{2-x}\right )\right )\\ &=16 e^{-4+2 x} \left (1+315 e^{2-x}\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 21, normalized size = 1.62 \begin {gather*} 32 \left (315 e^{-2+x}+\frac {1}{2} e^{-4+2 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 24, normalized size = 1.85 \begin {gather*} 64 \, {\left (315 \, e^{\left (-x + \log \relax (2) + 2\right )} + 1\right )} e^{\left (2 \, x - 2 \, \log \relax (2) - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 15, normalized size = 1.15 \begin {gather*} 16 \, {\left (e^{\left (2 \, x\right )} + 630 \, e^{\left (x + 2\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 1.23
method | result | size |
risch | \(16 \,{\mathrm e}^{2 x -4}+10080 \,{\mathrm e}^{x -2}\) | \(16\) |
norman | \(\frac {\left (64+20160 \,{\mathrm e}^{\ln \relax (2)+2-x}\right ) {\mathrm e}^{2 x -4}}{4}\) | \(24\) |
derivativedivides | \(16 \,{\mathrm e}^{2 x -4}+10080 \,{\mathrm e}^{x -2}\) | \(26\) |
default | \(16 \,{\mathrm e}^{2 x -4}+10080 \,{\mathrm e}^{x -2}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 15, normalized size = 1.15 \begin {gather*} 16 \, e^{\left (2 \, x - 4\right )} + 10080 \, e^{\left (x - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 13, normalized size = 1.00 \begin {gather*} 16\,{\mathrm {e}}^{-4}\,{\mathrm {e}}^x\,\left (630\,{\mathrm {e}}^2+{\mathrm {e}}^x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 14, normalized size = 1.08 \begin {gather*} 10080 e^{x - 2} + 16 e^{2 x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________