Optimal. Leaf size=40 \[ \frac {x}{5 \left (\frac {\frac {x}{5}+\frac {\log (x)}{3}}{x}+\frac {e^{-6+2 x}}{x \log (\log (x))}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 7.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {45 e^{-6+2 x} x+e^{-6+2 x} \left (90 x-90 x^2\right ) \log (x) \log (\log (x))+\left (\left (-15 x+9 x^2\right ) \log (x)+30 x \log ^2(x)\right ) \log ^2(\log (x))}{225 e^{-12+4 x} \log (x)+\left (90 e^{-6+2 x} x \log (x)+150 e^{-6+2 x} \log ^2(x)\right ) \log (\log (x))+\left (9 x^2 \log (x)+30 x \log ^2(x)+25 \log ^3(x)\right ) \log ^2(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 e^6 x \left (15 e^{2 x}+10 e^6 \log ^2(x) \log ^2(\log (x))+\log (x) \log (\log (x)) \left (-30 e^{2 x} (-1+x)+e^6 (-5+3 x) \log (\log (x))\right )\right )}{\log (x) \left (15 e^{2 x}+e^6 (3 x+5 \log (x)) \log (\log (x))\right )^2} \, dx\\ &=\left (3 e^6\right ) \int \frac {x \left (15 e^{2 x}+10 e^6 \log ^2(x) \log ^2(\log (x))+\log (x) \log (\log (x)) \left (-30 e^{2 x} (-1+x)+e^6 (-5+3 x) \log (\log (x))\right )\right )}{\log (x) \left (15 e^{2 x}+e^6 (3 x+5 \log (x)) \log (\log (x))\right )^2} \, dx\\ &=\left (3 e^6\right ) \int \left (-\frac {x (-1-2 \log (x) \log (\log (x))+2 x \log (x) \log (\log (x)))}{\log (x) \left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )}+\frac {e^6 x \log (\log (x)) \left (-3 x-5 \log (x)-5 \log (x) \log (\log (x))-3 x \log (x) \log (\log (x))+6 x^2 \log (x) \log (\log (x))+10 x \log ^2(x) \log (\log (x))\right )}{\log (x) \left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )^2}\right ) \, dx\\ &=-\left (\left (3 e^6\right ) \int \frac {x (-1-2 \log (x) \log (\log (x))+2 x \log (x) \log (\log (x)))}{\log (x) \left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )} \, dx\right )+\left (3 e^{12}\right ) \int \frac {x \log (\log (x)) \left (-3 x-5 \log (x)-5 \log (x) \log (\log (x))-3 x \log (x) \log (\log (x))+6 x^2 \log (x) \log (\log (x))+10 x \log ^2(x) \log (\log (x))\right )}{\log (x) \left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )^2} \, dx\\ &=-\left (\left (3 e^6\right ) \int \left (-\frac {x}{\log (x) \left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )}-\frac {2 x \log (\log (x))}{15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))}+\frac {2 x^2 \log (\log (x))}{15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))}\right ) \, dx\right )+\left (3 e^{12}\right ) \int \left (-\frac {5 x \log (\log (x))}{\left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )^2}-\frac {3 x^2 \log (\log (x))}{\log (x) \left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )^2}-\frac {5 x \log ^2(\log (x))}{\left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )^2}-\frac {3 x^2 \log ^2(\log (x))}{\left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )^2}+\frac {6 x^3 \log ^2(\log (x))}{\left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )^2}+\frac {10 x^2 \log (x) \log ^2(\log (x))}{\left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )^2}\right ) \, dx\\ &=\left (3 e^6\right ) \int \frac {x}{\log (x) \left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )} \, dx+\left (6 e^6\right ) \int \frac {x \log (\log (x))}{15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))} \, dx-\left (6 e^6\right ) \int \frac {x^2 \log (\log (x))}{15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))} \, dx-\left (9 e^{12}\right ) \int \frac {x^2 \log (\log (x))}{\log (x) \left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )^2} \, dx-\left (9 e^{12}\right ) \int \frac {x^2 \log ^2(\log (x))}{\left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )^2} \, dx-\left (15 e^{12}\right ) \int \frac {x \log (\log (x))}{\left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )^2} \, dx-\left (15 e^{12}\right ) \int \frac {x \log ^2(\log (x))}{\left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )^2} \, dx+\left (18 e^{12}\right ) \int \frac {x^3 \log ^2(\log (x))}{\left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )^2} \, dx+\left (30 e^{12}\right ) \int \frac {x^2 \log (x) \log ^2(\log (x))}{\left (15 e^{2 x}+3 e^6 x \log (\log (x))+5 e^6 \log (x) \log (\log (x))\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 36, normalized size = 0.90 \begin {gather*} \frac {3 e^6 x^2 \log (\log (x))}{15 e^{2 x}+e^6 (3 x+5 \log (x)) \log (\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 31, normalized size = 0.78 \begin {gather*} \frac {3 \, x^{2} \log \left (\log \relax (x)\right )}{{\left (3 \, x + 5 \, \log \relax (x)\right )} \log \left (\log \relax (x)\right ) + 15 \, e^{\left (2 \, x - 6\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 36, normalized size = 0.90 \begin {gather*} \frac {3 \, x^{2} e^{6} \log \left (\log \relax (x)\right )}{3 \, x e^{6} \log \left (\log \relax (x)\right ) + 5 \, e^{6} \log \relax (x) \log \left (\log \relax (x)\right ) + 15 \, e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 62, normalized size = 1.55
method | result | size |
risch | \(\frac {3 x^{2}}{3 x +5 \ln \relax (x )}-\frac {45 x^{2} {\mathrm e}^{2 x -6}}{\left (3 x +5 \ln \relax (x )\right ) \left (5 \ln \relax (x ) \ln \left (\ln \relax (x )\right )+3 x \ln \left (\ln \relax (x )\right )+15 \,{\mathrm e}^{2 x -6}\right )}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 35, normalized size = 0.88 \begin {gather*} \frac {3 \, x^{2} e^{6} \log \left (\log \relax (x)\right )}{{\left (3 \, x e^{6} + 5 \, e^{6} \log \relax (x)\right )} \log \left (\log \relax (x)\right ) + 15 \, e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.29, size = 280, normalized size = 7.00 \begin {gather*} 2\,x+\frac {50}{9\,\left (x+\frac {5}{3}\right )}-\frac {\frac {3\,x^2\,\left (3\,x-5\right )}{3\,x+5}+\frac {30\,x^2\,\ln \relax (x)}{3\,x+5}}{3\,x+5\,\ln \relax (x)}-\frac {45\,\left (25\,x^3\,{\mathrm {e}}^{2\,x-6}\,{\ln \relax (x)}^3+30\,x^4\,{\mathrm {e}}^{2\,x-6}\,{\ln \relax (x)}^2-75\,x^3\,{\mathrm {e}}^{4\,x-12}\,{\ln \relax (x)}^2-45\,x^4\,{\mathrm {e}}^{4\,x-12}\,{\ln \relax (x)}^2+150\,x^4\,{\mathrm {e}}^{4\,x-12}\,{\ln \relax (x)}^3+90\,x^5\,{\mathrm {e}}^{4\,x-12}\,{\ln \relax (x)}^2+9\,x^5\,{\mathrm {e}}^{2\,x-6}\,\ln \relax (x)\right )}{\left (3\,x+5\,\ln \relax (x)\right )\,\left (15\,{\mathrm {e}}^{2\,x-6}+\ln \left (\ln \relax (x)\right )\,\left (3\,x+5\,\ln \relax (x)\right )\right )\,\left (25\,x\,{\ln \relax (x)}^3+9\,x^3\,\ln \relax (x)+30\,x^2\,{\ln \relax (x)}^2-45\,x^2\,{\mathrm {e}}^{2\,x-6}\,{\ln \relax (x)}^2+150\,x^2\,{\mathrm {e}}^{2\,x-6}\,{\ln \relax (x)}^3+90\,x^3\,{\mathrm {e}}^{2\,x-6}\,{\ln \relax (x)}^2-75\,x\,{\mathrm {e}}^{2\,x-6}\,{\ln \relax (x)}^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 36, normalized size = 0.90 \begin {gather*} \frac {3 x^{2} \log {\left (\log {\relax (x )} \right )}}{3 x \log {\left (\log {\relax (x )} \right )} + 15 e^{2 x - 6} + 5 \log {\relax (x )} \log {\left (\log {\relax (x )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________