Optimal. Leaf size=31 \[ \frac {x^2}{\left (\frac {4}{x}-\frac {3+x}{1-x}\right )^2}-\log ^2(2) \]
________________________________________________________________________________________
Rubi [B] time = 0.18, antiderivative size = 68, normalized size of antiderivative = 2.19, number of steps used = 11, number of rules used = 5, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {2074, 638, 614, 618, 206} \begin {gather*} x^2-\frac {17424 (2 x+7)}{13 \left (-x^2-7 x+4\right )}+\frac {56 (1055 x+1112)}{13 \left (-x^2-7 x+4\right )}+\frac {16 (964-1815 x)}{\left (-x^2-7 x+4\right )^2}-16 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 206
Rule 614
Rule 618
Rule 638
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-16+2 x-\frac {32 (-7772+14633 x)}{\left (-4+7 x+x^2\right )^3}-\frac {56 (-1248+397 x)}{\left (-4+7 x+x^2\right )^2}+\frac {1864}{-4+7 x+x^2}\right ) \, dx\\ &=-16 x+x^2-32 \int \frac {-7772+14633 x}{\left (-4+7 x+x^2\right )^3} \, dx-56 \int \frac {-1248+397 x}{\left (-4+7 x+x^2\right )^2} \, dx+1864 \int \frac {1}{-4+7 x+x^2} \, dx\\ &=-16 x+x^2+\frac {16 (964-1815 x)}{\left (4-7 x-x^2\right )^2}+\frac {56 (1112+1055 x)}{13 \left (4-7 x-x^2\right )}-3728 \operatorname {Subst}\left (\int \frac {1}{65-x^2} \, dx,x,7+2 x\right )-\frac {59080}{13} \int \frac {1}{-4+7 x+x^2} \, dx-87120 \int \frac {1}{\left (-4+7 x+x^2\right )^2} \, dx\\ &=-16 x+x^2+\frac {16 (964-1815 x)}{\left (4-7 x-x^2\right )^2}-\frac {17424 (7+2 x)}{13 \left (4-7 x-x^2\right )}+\frac {56 (1112+1055 x)}{13 \left (4-7 x-x^2\right )}-\frac {3728 \tanh ^{-1}\left (\frac {7+2 x}{\sqrt {65}}\right )}{\sqrt {65}}+\frac {34848}{13} \int \frac {1}{-4+7 x+x^2} \, dx+\frac {118160}{13} \operatorname {Subst}\left (\int \frac {1}{65-x^2} \, dx,x,7+2 x\right )\\ &=-16 x+x^2+\frac {16 (964-1815 x)}{\left (4-7 x-x^2\right )^2}-\frac {17424 (7+2 x)}{13 \left (4-7 x-x^2\right )}+\frac {56 (1112+1055 x)}{13 \left (4-7 x-x^2\right )}+\frac {23632}{13} \sqrt {\frac {5}{13}} \tanh ^{-1}\left (\frac {7+2 x}{\sqrt {65}}\right )-\frac {3728 \tanh ^{-1}\left (\frac {7+2 x}{\sqrt {65}}\right )}{\sqrt {65}}-\frac {69696}{13} \operatorname {Subst}\left (\int \frac {1}{65-x^2} \, dx,x,7+2 x\right )\\ &=-16 x+x^2+\frac {16 (964-1815 x)}{\left (4-7 x-x^2\right )^2}-\frac {17424 (7+2 x)}{13 \left (4-7 x-x^2\right )}+\frac {56 (1112+1055 x)}{13 \left (4-7 x-x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 47, normalized size = 1.52 \begin {gather*} 2 \left (-8 x+\frac {x^2}{2}-\frac {8 (-964+1815 x)}{\left (-4+7 x+x^2\right )^2}-\frac {4 (-574+233 x)}{-4+7 x+x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 49, normalized size = 1.58 \begin {gather*} \frac {x^{6} - 2 \, x^{5} - 183 \, x^{4} - 2576 \, x^{3} - 7544 \, x^{2} + 10304 \, x - 2944}{x^{4} + 14 \, x^{3} + 41 \, x^{2} - 56 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 34, normalized size = 1.10 \begin {gather*} x^{2} - 16 \, x - \frac {8 \, {\left (233 \, x^{3} + 1057 \, x^{2} - 1320 \, x + 368\right )}}{{\left (x^{2} + 7 \, x - 4\right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 35, normalized size = 1.13
method | result | size |
default | \(-16 x +x^{2}+\frac {-1864 x^{3}-8456 x^{2}+10560 x -2944}{\left (x^{2}+7 x -4\right )^{2}}\) | \(35\) |
norman | \(\frac {x^{6}-2 x^{5}-14 x^{3}-41 x^{2}+56 x -16}{\left (x^{2}+7 x -4\right )^{2}}\) | \(35\) |
risch | \(x^{2}-16 x +\frac {-1864 x^{3}-8456 x^{2}+10560 x -2944}{x^{4}+14 x^{3}+41 x^{2}-56 x +16}\) | \(44\) |
gosper | \(\frac {x^{6}-2 x^{5}-14 x^{3}-41 x^{2}+56 x -16}{x^{4}+14 x^{3}+41 x^{2}-56 x +16}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 44, normalized size = 1.42 \begin {gather*} x^{2} - 16 \, x - \frac {8 \, {\left (233 \, x^{3} + 1057 \, x^{2} - 1320 \, x + 368\right )}}{x^{4} + 14 \, x^{3} + 41 \, x^{2} - 56 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 34, normalized size = 1.10 \begin {gather*} x^2-\frac {1864\,x^3+8456\,x^2-10560\,x+2944}{{\left (x^2+7\,x-4\right )}^2}-16\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.12, size = 39, normalized size = 1.26 \begin {gather*} x^{2} - 16 x + \frac {- 1864 x^{3} - 8456 x^{2} + 10560 x - 2944}{x^{4} + 14 x^{3} + 41 x^{2} - 56 x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________