Optimal. Leaf size=31 \[ \frac {e^3-x^2 (1+\log (x))}{-e^{60 x^2}+e^4 x} \]
________________________________________________________________________________________
Rubi [F] time = 2.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^4 \left (-e^3-2 x^2\right )+e^{60 x^2} \left (3 x+120 e^3 x-120 x^3\right )+\left (-e^4 x^2+e^{60 x^2} \left (2 x-120 x^3\right )\right ) \log (x)}{e^{120 x^2}-2 e^{4+60 x^2} x+e^8 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^4 \left (-e^3-2 x^2\right )+e^{60 x^2} \left (3 x+120 e^3 x-120 x^3\right )+\left (-e^4 x^2+e^{60 x^2} \left (2 x-120 x^3\right )\right ) \log (x)}{\left (e^{60 x^2}-e^4 x\right )^2} \, dx\\ &=\int \left (\frac {x \left (3 \left (1+40 e^3\right )-120 x^2+2 \log (x)-120 x^2 \log (x)\right )}{e^{60 x^2}-e^4 x}+\frac {e^4 \left (-1+120 x^2\right ) \left (e^3-x^2-x^2 \log (x)\right )}{\left (-e^{60 x^2}+e^4 x\right )^2}\right ) \, dx\\ &=e^4 \int \frac {\left (-1+120 x^2\right ) \left (e^3-x^2-x^2 \log (x)\right )}{\left (-e^{60 x^2}+e^4 x\right )^2} \, dx+\int \frac {x \left (3 \left (1+40 e^3\right )-120 x^2+2 \log (x)-120 x^2 \log (x)\right )}{e^{60 x^2}-e^4 x} \, dx\\ &=e^4 \int \left (-\frac {e^3-x^2-x^2 \log (x)}{\left (e^{60 x^2}-e^4 x\right )^2}-\frac {120 x^2 \left (-e^3+x^2+x^2 \log (x)\right )}{\left (-e^{60 x^2}+e^4 x\right )^2}\right ) \, dx+\int \left (-\frac {3 \left (1+40 e^3\right ) x}{-e^{60 x^2}+e^4 x}+\frac {120 x^3}{-e^{60 x^2}+e^4 x}-\frac {2 x \log (x)}{-e^{60 x^2}+e^4 x}+\frac {120 x^3 \log (x)}{-e^{60 x^2}+e^4 x}\right ) \, dx\\ &=-\left (2 \int \frac {x \log (x)}{-e^{60 x^2}+e^4 x} \, dx\right )+120 \int \frac {x^3}{-e^{60 x^2}+e^4 x} \, dx+120 \int \frac {x^3 \log (x)}{-e^{60 x^2}+e^4 x} \, dx-e^4 \int \frac {e^3-x^2-x^2 \log (x)}{\left (e^{60 x^2}-e^4 x\right )^2} \, dx-\left (120 e^4\right ) \int \frac {x^2 \left (-e^3+x^2+x^2 \log (x)\right )}{\left (-e^{60 x^2}+e^4 x\right )^2} \, dx-\left (3 \left (1+40 e^3\right )\right ) \int \frac {x}{-e^{60 x^2}+e^4 x} \, dx\\ &=2 \int \frac {\int \frac {x}{-e^{60 x^2}+e^4 x} \, dx}{x} \, dx+120 \int \frac {x^3}{-e^{60 x^2}+e^4 x} \, dx-120 \int \frac {\int \frac {x^3}{-e^{60 x^2}+e^4 x} \, dx}{x} \, dx-e^4 \int \left (\frac {e^3}{\left (-e^{60 x^2}+e^4 x\right )^2}-\frac {x^2}{\left (-e^{60 x^2}+e^4 x\right )^2}-\frac {x^2 \log (x)}{\left (-e^{60 x^2}+e^4 x\right )^2}\right ) \, dx-\left (120 e^4\right ) \int \left (-\frac {e^3 x^2}{\left (-e^{60 x^2}+e^4 x\right )^2}+\frac {x^4}{\left (-e^{60 x^2}+e^4 x\right )^2}+\frac {x^4 \log (x)}{\left (-e^{60 x^2}+e^4 x\right )^2}\right ) \, dx-\left (3 \left (1+40 e^3\right )\right ) \int \frac {x}{-e^{60 x^2}+e^4 x} \, dx-(2 \log (x)) \int \frac {x}{-e^{60 x^2}+e^4 x} \, dx+(120 \log (x)) \int \frac {x^3}{-e^{60 x^2}+e^4 x} \, dx\\ &=2 \int \frac {\int \frac {x}{-e^{60 x^2}+e^4 x} \, dx}{x} \, dx+120 \int \frac {x^3}{-e^{60 x^2}+e^4 x} \, dx-120 \int \frac {\int \frac {x^3}{-e^{60 x^2}+e^4 x} \, dx}{x} \, dx+e^4 \int \frac {x^2}{\left (-e^{60 x^2}+e^4 x\right )^2} \, dx+e^4 \int \frac {x^2 \log (x)}{\left (-e^{60 x^2}+e^4 x\right )^2} \, dx-\left (120 e^4\right ) \int \frac {x^4}{\left (-e^{60 x^2}+e^4 x\right )^2} \, dx-\left (120 e^4\right ) \int \frac {x^4 \log (x)}{\left (-e^{60 x^2}+e^4 x\right )^2} \, dx-e^7 \int \frac {1}{\left (-e^{60 x^2}+e^4 x\right )^2} \, dx+\left (120 e^7\right ) \int \frac {x^2}{\left (-e^{60 x^2}+e^4 x\right )^2} \, dx-\left (3 \left (1+40 e^3\right )\right ) \int \frac {x}{-e^{60 x^2}+e^4 x} \, dx-(2 \log (x)) \int \frac {x}{-e^{60 x^2}+e^4 x} \, dx+(120 \log (x)) \int \frac {x^3}{-e^{60 x^2}+e^4 x} \, dx\\ &=2 \int \frac {\int \frac {x}{-e^{60 x^2}+e^4 x} \, dx}{x} \, dx+120 \int \frac {x^3}{-e^{60 x^2}+e^4 x} \, dx-120 \int \frac {\int \frac {x^3}{-e^{60 x^2}+e^4 x} \, dx}{x} \, dx+e^4 \int \frac {x^2}{\left (-e^{60 x^2}+e^4 x\right )^2} \, dx-e^4 \int \frac {\int \frac {x^2}{\left (e^{60 x^2}-e^4 x\right )^2} \, dx}{x} \, dx-\left (120 e^4\right ) \int \frac {x^4}{\left (-e^{60 x^2}+e^4 x\right )^2} \, dx+\left (120 e^4\right ) \int \frac {\int \frac {x^4}{\left (e^{60 x^2}-e^4 x\right )^2} \, dx}{x} \, dx-e^7 \int \frac {1}{\left (-e^{60 x^2}+e^4 x\right )^2} \, dx+\left (120 e^7\right ) \int \frac {x^2}{\left (-e^{60 x^2}+e^4 x\right )^2} \, dx-\left (3 \left (1+40 e^3\right )\right ) \int \frac {x}{-e^{60 x^2}+e^4 x} \, dx-(2 \log (x)) \int \frac {x}{-e^{60 x^2}+e^4 x} \, dx+(120 \log (x)) \int \frac {x^3}{-e^{60 x^2}+e^4 x} \, dx+\left (e^4 \log (x)\right ) \int \frac {x^2}{\left (-e^{60 x^2}+e^4 x\right )^2} \, dx-\left (120 e^4 \log (x)\right ) \int \frac {x^4}{\left (-e^{60 x^2}+e^4 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 34, normalized size = 1.10 \begin {gather*} -\frac {e^3-x^2-x^2 \log (x)}{e^{60 x^2}-e^4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 38, normalized size = 1.23 \begin {gather*} -\frac {x^{2} e^{4} \log \relax (x) + x^{2} e^{4} - e^{7}}{x e^{8} - e^{\left (60 \, x^{2} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 80, normalized size = 2.58 \begin {gather*} -\frac {x^{3} e^{4} \log \relax (x) + x^{3} e^{4} - x^{2} e^{\left (60 \, x^{2}\right )} \log \relax (x) - x^{2} e^{\left (60 \, x^{2}\right )} - x e^{7} + e^{\left (60 \, x^{2} + 3\right )}}{x^{2} e^{8} - 2 \, x e^{\left (60 \, x^{2} + 4\right )} + e^{\left (120 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 48, normalized size = 1.55
method | result | size |
risch | \(-\frac {x^{2} \ln \relax (x )}{x \,{\mathrm e}^{4}-{\mathrm e}^{60 x^{2}}}+\frac {{\mathrm e}^{3}-x^{2}}{x \,{\mathrm e}^{4}-{\mathrm e}^{60 x^{2}}}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 31, normalized size = 1.00 \begin {gather*} -\frac {x^{2} \log \relax (x) + x^{2} - e^{3}}{x e^{4} - e^{\left (60 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.20, size = 29, normalized size = 0.94 \begin {gather*} \frac {x^2\,\ln \relax (x)-{\mathrm {e}}^3+x^2}{{\mathrm {e}}^{60\,x^2}-x\,{\mathrm {e}}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 24, normalized size = 0.77 \begin {gather*} \frac {x^{2} \log {\relax (x )} + x^{2} - e^{3}}{- x e^{4} + e^{60 x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________