Optimal. Leaf size=21 \[ x-4 \left (x+\log ^2\left (3+2 \left (-1+e^5+x\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.27, antiderivative size = 69, normalized size of antiderivative = 3.29, number of steps used = 12, number of rules used = 10, integrand size = 85, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {6742, 2411, 2346, 2301, 2295, 2389, 2296, 2390, 2302, 30} \begin {gather*} -4 x^2+x-4 \log ^4\left (2 x+2 e^5+1\right )-4 \left (2 x+2 e^5+1\right ) \log ^2\left (2 x+2 e^5+1\right )+4 \left (1+2 e^5\right ) \log ^2\left (2 x+2 e^5+1\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2295
Rule 2296
Rule 2301
Rule 2302
Rule 2346
Rule 2389
Rule 2390
Rule 2411
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-8 x-\frac {32 x \log \left (1+2 e^5+2 x\right )}{1+2 e^5+2 x}-8 \log ^2\left (1+2 e^5+2 x\right )-\frac {32 \log ^3\left (1+2 e^5+2 x\right )}{1+2 e^5+2 x}\right ) \, dx\\ &=x-4 x^2-8 \int \log ^2\left (1+2 e^5+2 x\right ) \, dx-32 \int \frac {x \log \left (1+2 e^5+2 x\right )}{1+2 e^5+2 x} \, dx-32 \int \frac {\log ^3\left (1+2 e^5+2 x\right )}{1+2 e^5+2 x} \, dx\\ &=x-4 x^2-4 \operatorname {Subst}\left (\int \log ^2(x) \, dx,x,1+2 e^5+2 x\right )-16 \operatorname {Subst}\left (\int \frac {\left (\frac {1}{2} \left (-1-2 e^5\right )+\frac {x}{2}\right ) \log (x)}{x} \, dx,x,1+2 e^5+2 x\right )-16 \operatorname {Subst}\left (\int \frac {\log ^3(x)}{x} \, dx,x,1+2 e^5+2 x\right )\\ &=x-4 x^2-4 \left (1+2 e^5+2 x\right ) \log ^2\left (1+2 e^5+2 x\right )-16 \operatorname {Subst}\left (\int x^3 \, dx,x,\log \left (1+2 e^5+2 x\right )\right )+\left (8 \left (1+2 e^5\right )\right ) \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,1+2 e^5+2 x\right )\\ &=x-4 x^2+4 \left (1+2 e^5\right ) \log ^2\left (1+2 e^5+2 x\right )-4 \left (1+2 e^5+2 x\right ) \log ^2\left (1+2 e^5+2 x\right )-4 \log ^4\left (1+2 e^5+2 x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.03, size = 51, normalized size = 2.43 \begin {gather*} \frac {3}{2}+5 e^5+4 e^{10}+x-4 x^2-8 x \log ^2\left (1+2 e^5+2 x\right )-4 \log ^4\left (1+2 e^5+2 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 36, normalized size = 1.71 \begin {gather*} -4 \, \log \left (2 \, x + 2 \, e^{5} + 1\right )^{4} - 8 \, x \log \left (2 \, x + 2 \, e^{5} + 1\right )^{2} - 4 \, x^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 36, normalized size = 1.71 \begin {gather*} -4 \, \log \left (2 \, x + 2 \, e^{5} + 1\right )^{4} - 8 \, x \log \left (2 \, x + 2 \, e^{5} + 1\right )^{2} - 4 \, x^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 37, normalized size = 1.76
method | result | size |
norman | \(x -4 x^{2}-4 \ln \left (2 \,{\mathrm e}^{5}+2 x +1\right )^{4}-8 \ln \left (2 \,{\mathrm e}^{5}+2 x +1\right )^{2} x\) | \(37\) |
risch | \(x -4 x^{2}-4 \ln \left (2 \,{\mathrm e}^{5}+2 x +1\right )^{4}-8 \ln \left (2 \,{\mathrm e}^{5}+2 x +1\right )^{2} x\) | \(37\) |
derivativedivides | \(-4 \ln \left (2 \,{\mathrm e}^{5}+2 x +1\right )^{4}-4 \ln \left (2 \,{\mathrm e}^{5}+2 x +1\right )^{2} \left (2 \,{\mathrm e}^{5}+2 x +1\right )+5 \,{\mathrm e}^{5}+5 x +\frac {5}{2}+8 \ln \left (2 \,{\mathrm e}^{5}+2 x +1\right )^{2} {\mathrm e}^{5}+4 \,{\mathrm e}^{5} \left (2 \,{\mathrm e}^{5}+2 x +1\right )-\left (2 \,{\mathrm e}^{5}+2 x +1\right )^{2}+4 \ln \left (2 \,{\mathrm e}^{5}+2 x +1\right )^{2}\) | \(103\) |
default | \(-4 \ln \left (2 \,{\mathrm e}^{5}+2 x +1\right )^{4}-4 \ln \left (2 \,{\mathrm e}^{5}+2 x +1\right )^{2} \left (2 \,{\mathrm e}^{5}+2 x +1\right )+5 \,{\mathrm e}^{5}+5 x +\frac {5}{2}+8 \ln \left (2 \,{\mathrm e}^{5}+2 x +1\right )^{2} {\mathrm e}^{5}+4 \,{\mathrm e}^{5} \left (2 \,{\mathrm e}^{5}+2 x +1\right )-\left (2 \,{\mathrm e}^{5}+2 x +1\right )^{2}+4 \ln \left (2 \,{\mathrm e}^{5}+2 x +1\right )^{2}\) | \(103\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 262, normalized size = 12.48 \begin {gather*} \frac {4}{3} \, {\left (2 \, e^{5} + 1\right )} \log \left (2 \, x + 2 \, e^{5} + 1\right )^{3} - \frac {8}{3} \, e^{5} \log \left (2 \, x + 2 \, e^{5} + 1\right )^{3} - 4 \, \log \left (2 \, x + 2 \, e^{5} + 1\right )^{4} - 4 \, {\left (2 \, e^{5} + 1\right )} \log \left (2 \, x + 2 \, e^{5} + 1\right )^{2} - \frac {4}{3} \, \log \left (2 \, x + 2 \, e^{5} + 1\right )^{3} - 4 \, {\left (\log \left (2 \, x + 2 \, e^{5} + 1\right )^{2} - 2 \, \log \left (2 \, x + 2 \, e^{5} + 1\right ) + 2\right )} {\left (2 \, x + 2 \, e^{5} + 1\right )} - 4 \, x^{2} + 4 \, x {\left (2 \, e^{5} + 1\right )} + 4 \, {\left ({\left (2 \, e^{5} + 1\right )} \log \left (2 \, x + 2 \, e^{5} + 1\right ) - 2 \, x\right )} e^{5} + 8 \, {\left ({\left (2 \, e^{5} + 1\right )} \log \left (2 \, x + 2 \, e^{5} + 1\right ) - 2 \, x\right )} \log \left (2 \, x + 2 \, e^{5} + 1\right ) - 2 \, {\left (4 \, e^{10} + 4 \, e^{5} + 1\right )} \log \left (2 \, x + 2 \, e^{5} + 1\right ) - \frac {13}{2} \, {\left (2 \, e^{5} + 1\right )} \log \left (2 \, x + 2 \, e^{5} + 1\right ) + e^{5} \log \left (2 \, x + 2 \, e^{5} + 1\right ) + 13 \, x + \frac {1}{2} \, \log \left (2 \, x + 2 \, e^{5} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.14, size = 36, normalized size = 1.71 \begin {gather*} -4\,x^2-8\,x\,{\ln \left (2\,x+2\,{\mathrm {e}}^5+1\right )}^2+x-4\,{\ln \left (2\,x+2\,{\mathrm {e}}^5+1\right )}^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 37, normalized size = 1.76 \begin {gather*} - 4 x^{2} - 8 x \log {\left (2 x + 1 + 2 e^{5} \right )}^{2} + x - 4 \log {\left (2 x + 1 + 2 e^{5} \right )}^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________