Optimal. Leaf size=27 \[ 3 \left (4+e^x-\left (4-\frac {1}{x^2}\right ) \left (5 e^{2/5}-x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 24, normalized size of antiderivative = 0.89, number of steps used = 5, number of rules used = 2, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {14, 2194} \begin {gather*} \frac {15 e^{2/5}}{x^2}+12 x+3 e^x-\frac {3}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (3 e^x-\frac {3 \left (10 e^{2/5}-x-4 x^3\right )}{x^3}\right ) \, dx\\ &=3 \int e^x \, dx-3 \int \frac {10 e^{2/5}-x-4 x^3}{x^3} \, dx\\ &=3 e^x-3 \int \left (-4+\frac {10 e^{2/5}}{x^3}-\frac {1}{x^2}\right ) \, dx\\ &=3 e^x+\frac {15 e^{2/5}}{x^2}-\frac {3}{x}+12 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 24, normalized size = 0.89 \begin {gather*} 3 \left (e^x+\frac {5 e^{2/5}}{x^2}-\frac {1}{x}+4 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 24, normalized size = 0.89 \begin {gather*} \frac {3 \, {\left (4 \, x^{3} + x^{2} e^{x} - x + 5 \, e^{\frac {2}{5}}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 24, normalized size = 0.89 \begin {gather*} \frac {3 \, {\left (4 \, x^{3} + x^{2} e^{x} - x + 5 \, e^{\frac {2}{5}}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 21, normalized size = 0.78
method | result | size |
default | \(12 x -\frac {3}{x}+\frac {15 \,{\mathrm e}^{\frac {2}{5}}}{x^{2}}+3 \,{\mathrm e}^{x}\) | \(21\) |
risch | \(12 x +\frac {15 \,{\mathrm e}^{\frac {2}{5}}-3 x}{x^{2}}+3 \,{\mathrm e}^{x}\) | \(21\) |
norman | \(\frac {-3 x +12 x^{3}+3 \,{\mathrm e}^{x} x^{2}+15 \,{\mathrm e}^{\frac {2}{5}}}{x^{2}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 20, normalized size = 0.74 \begin {gather*} 12 \, x - \frac {3}{x} + \frac {15 \, e^{\frac {2}{5}}}{x^{2}} + 3 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 21, normalized size = 0.78 \begin {gather*} 12\,x+3\,{\mathrm {e}}^x-\frac {3\,x-15\,{\mathrm {e}}^{2/5}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 0.74 \begin {gather*} 12 x + 3 e^{x} + \frac {- 3 x + 15 e^{\frac {2}{5}}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________