Optimal. Leaf size=22 \[ \log \left (\left (5-e^x+e^{\frac {x^2}{16}}\right )^2+\log (4)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.85, antiderivative size = 54, normalized size of antiderivative = 2.45, number of steps used = 4, number of rules used = 3, integrand size = 96, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {6741, 12, 6684} \begin {gather*} \log \left (-10 e^{\frac {x^2}{16}}-e^{\frac {x^2}{8}}+2 e^{\frac {x^2}{16}+x}+10 e^x-e^{2 x}-25-\log (4)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (5-e^x+e^{\frac {x^2}{16}}\right ) \left (8 e^x-e^{\frac {x^2}{16}} x\right )}{40 e^x-4 e^{2 x}-4 e^{\frac {x^2}{8}}-e^{\frac {x^2}{16}} \left (40-8 e^x\right )-100 \left (1+\frac {2 \log (2)}{25}\right )} \, dx\\ &=\int \frac {\left (5-e^x+e^{\frac {x^2}{16}}\right ) \left (8 e^x-e^{\frac {x^2}{16}} x\right )}{4 \left (10 e^x-e^{2 x}-10 e^{\frac {x^2}{16}}-e^{\frac {x^2}{8}}+2 e^{x+\frac {x^2}{16}}-25 \left (1+\frac {2 \log (2)}{25}\right )\right )} \, dx\\ &=\frac {1}{4} \int \frac {\left (5-e^x+e^{\frac {x^2}{16}}\right ) \left (8 e^x-e^{\frac {x^2}{16}} x\right )}{10 e^x-e^{2 x}-10 e^{\frac {x^2}{16}}-e^{\frac {x^2}{8}}+2 e^{x+\frac {x^2}{16}}-25 \left (1+\frac {2 \log (2)}{25}\right )} \, dx\\ &=\log \left (-25+10 e^x-e^{2 x}-10 e^{\frac {x^2}{16}}-e^{\frac {x^2}{8}}+2 e^{x+\frac {x^2}{16}}-\log (4)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.03, size = 48, normalized size = 2.18 \begin {gather*} \log \left (25-10 e^x+e^{2 x}+10 e^{\frac {x^2}{16}}+e^{\frac {x^2}{8}}-2 e^{x+\frac {x^2}{16}}+\log (4)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 33, normalized size = 1.50 \begin {gather*} \log \left (-2 \, {\left (e^{x} - 5\right )} e^{\left (\frac {1}{16} \, x^{2}\right )} + e^{\left (\frac {1}{8} \, x^{2}\right )} + e^{\left (2 \, x\right )} - 10 \, e^{x} + 2 \, \log \relax (2) + 25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 39, normalized size = 1.77 \begin {gather*} \log \left (e^{\left (\frac {1}{8} \, x^{2}\right )} + 10 \, e^{\left (\frac {1}{16} \, x^{2}\right )} - 2 \, e^{\left (\frac {1}{16} \, x^{2} + x\right )} + e^{\left (2 \, x\right )} - 10 \, e^{x} + 2 \, \log \relax (2) + 25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 35, normalized size = 1.59
method | result | size |
risch | \(\ln \left ({\mathrm e}^{\frac {x^{2}}{8}}+\left (-2 \,{\mathrm e}^{x}+10\right ) {\mathrm e}^{\frac {x^{2}}{16}}+{\mathrm e}^{2 x}+2 \ln \relax (2)-10 \,{\mathrm e}^{x}+25\right )\) | \(35\) |
norman | \(\ln \left (4 \,{\mathrm e}^{2 x}-8 \,{\mathrm e}^{x} {\mathrm e}^{\frac {x^{2}}{16}}+4 \,{\mathrm e}^{\frac {x^{2}}{8}}-40 \,{\mathrm e}^{x}+8 \ln \relax (2)+40 \,{\mathrm e}^{\frac {x^{2}}{16}}+100\right )\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.73, size = 33, normalized size = 1.50 \begin {gather*} \log \left (-2 \, {\left (e^{x} - 5\right )} e^{\left (\frac {1}{16} \, x^{2}\right )} + e^{\left (\frac {1}{8} \, x^{2}\right )} + e^{\left (2 \, x\right )} - 10 \, e^{x} + 2 \, \log \relax (2) + 25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.17, size = 37, normalized size = 1.68 \begin {gather*} \ln \left ({\mathrm {e}}^{2\,x}+\ln \relax (4)-2\,{\mathrm {e}}^{\frac {x^2}{16}+x}+{\mathrm {e}}^{\frac {x^2}{8}}+10\,{\mathrm {e}}^{\frac {x^2}{16}}-10\,{\mathrm {e}}^x+25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.32, size = 46, normalized size = 2.09 \begin {gather*} \frac {3 x^{2}}{32} + \frac {\log {\left (\left (10 - 2 e^{x}\right ) e^{\frac {x^{2}}{16}} + e^{2 x} - 10 e^{x} + e^{\frac {x^{2}}{8}} + 2 \log {\relax (2 )} + 25 \right )}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________