Optimal. Leaf size=37 \[ \frac {e^{-2+\frac {\log \left (x^2\right )}{5-e^{e^{\frac {-3+x+(1+2 x)^2}{x}}}}}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 10.97, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {10-2 e^{e^{\frac {-2+5 x+4 x^2}{x}}}-\log \left (x^2\right )}{-5+e^{e^{\frac {-2+5 x+4 x^2}{x}}}}\right ) \left (-15 x-e^{2 e^{\frac {-2+5 x+4 x^2}{x}}} x+e^{e^{\frac {-2+5 x+4 x^2}{x}}} \left (8 x+e^{\frac {-2+5 x+4 x^2}{x}} \left (2+4 x^2\right ) \log \left (x^2\right )\right )\right )}{25 x^3-10 e^{e^{\frac {-2+5 x+4 x^2}{x}}} x^3+e^{2 e^{\frac {-2+5 x+4 x^2}{x}}} x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}} \left (-\frac {\left (15-8 e^{e^{5-\frac {2}{x}+4 x}}+e^{2 e^{5-\frac {2}{x}+4 x}}\right ) x}{e^2}+2 e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (1+2 x^2\right ) \log \left (x^2\right )\right )}{\left (5-e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x^3} \, dx\\ &=\int \left (-\frac {\left (-3+e^{e^{5-\frac {2}{x}+4 x}}\right ) \left (x^2\right )^{-1+\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{e^2 \left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )}+\frac {2 e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}} \left (1+2 x^2\right ) \log \left (x^2\right )}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x^3}\right ) \, dx\\ &=2 \int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}} \left (1+2 x^2\right ) \log \left (x^2\right )}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x^3} \, dx-\frac {\int \frac {\left (-3+e^{e^{5-\frac {2}{x}+4 x}}\right ) \left (x^2\right )^{-1+\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{-5+e^{e^{5-\frac {2}{x}+4 x}}} \, dx}{e^2}\\ &=-\left (2 \int \frac {2 \left (\int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x^3} \, dx+2 \int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x} \, dx\right )}{x} \, dx\right )-\frac {\int \left (\left (x^2\right )^{-1+\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}+\frac {2 \left (x^2\right )^{-1+\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{-5+e^{e^{5-\frac {2}{x}+4 x}}}\right ) \, dx}{e^2}+\left (2 \log \left (x^2\right )\right ) \int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x^3} \, dx+\left (4 \log \left (x^2\right )\right ) \int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x} \, dx\\ &=-\left (4 \int \frac {\int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x^3} \, dx+2 \int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x} \, dx}{x} \, dx\right )-\frac {\int \left (x^2\right )^{-1+\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}} \, dx}{e^2}-\frac {2 \int \frac {\left (x^2\right )^{-1+\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{-5+e^{e^{5-\frac {2}{x}+4 x}}} \, dx}{e^2}+\left (2 \log \left (x^2\right )\right ) \int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x^3} \, dx+\left (4 \log \left (x^2\right )\right ) \int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x} \, dx\\ &=-\left (4 \int \left (\frac {\int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x^3} \, dx}{x}+\frac {2 \int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x} \, dx}{x}\right ) \, dx\right )-\frac {\int \left (x^2\right )^{-1+\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}} \, dx}{e^2}-\frac {2 \int \frac {\left (x^2\right )^{-1+\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{-5+e^{e^{5-\frac {2}{x}+4 x}}} \, dx}{e^2}+\left (2 \log \left (x^2\right )\right ) \int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x^3} \, dx+\left (4 \log \left (x^2\right )\right ) \int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x} \, dx\\ &=-\left (4 \int \frac {\int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x^3} \, dx}{x} \, dx\right )-8 \int \frac {\int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x} \, dx}{x} \, dx-\frac {\int \left (x^2\right )^{-1+\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}} \, dx}{e^2}-\frac {2 \int \frac {\left (x^2\right )^{-1+\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{-5+e^{e^{5-\frac {2}{x}+4 x}}} \, dx}{e^2}+\left (2 \log \left (x^2\right )\right ) \int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x^3} \, dx+\left (4 \log \left (x^2\right )\right ) \int \frac {e^{3+e^{5-\frac {2}{x}+4 x}-\frac {2}{x}+4 x} \left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{\left (-5+e^{e^{5-\frac {2}{x}+4 x}}\right )^2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 31, normalized size = 0.84 \begin {gather*} \frac {\left (x^2\right )^{\frac {1}{5-e^{e^{5-\frac {2}{x}+4 x}}}}}{e^2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 51, normalized size = 1.38 \begin {gather*} \frac {e^{\left (-\frac {2 \, e^{\left (e^{\left (\frac {4 \, x^{2} + 5 \, x - 2}{x}\right )}\right )} + \log \left (x^{2}\right ) - 10}{e^{\left (e^{\left (\frac {4 \, x^{2} + 5 \, x - 2}{x}\right )}\right )} - 5}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.78, size = 100, normalized size = 2.70 \begin {gather*} \frac {e^{\left (\frac {e^{\left (\frac {4 \, x^{2} + 5 \, x - 2}{x} + e^{\left (\frac {4 \, x^{2} + 5 \, x - 2}{x}\right )}\right )} - 5 \, e^{\left (\frac {4 \, x^{2} + 5 \, x - 2}{x}\right )} - \log \left (x^{2}\right )}{e^{\left (e^{\left (\frac {4 \, x^{2} + 5 \, x - 2}{x}\right )}\right )} - 5} - e^{\left (\frac {4 \, x^{2} + 5 \, x - 2}{x}\right )} - 2\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.34, size = 101, normalized size = 2.73
method | result | size |
risch | \(\frac {{\mathrm e}^{-\frac {-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )-i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}+4 \ln \relax (x )+4 \,{\mathrm e}^{{\mathrm e}^{\frac {4 x^{2}+5 x -2}{x}}}-20}{2 \left ({\mathrm e}^{{\mathrm e}^{\frac {4 x^{2}+5 x -2}{x}}}-5\right )}}}{x}\) | \(101\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int \frac {{\left (x e^{\left (2 \, e^{\left (\frac {4 \, x^{2} + 5 \, x - 2}{x}\right )}\right )} - 2 \, {\left ({\left (2 \, x^{2} + 1\right )} e^{\left (\frac {4 \, x^{2} + 5 \, x - 2}{x}\right )} \log \left (x^{2}\right ) + 4 \, x\right )} e^{\left (e^{\left (\frac {4 \, x^{2} + 5 \, x - 2}{x}\right )}\right )} + 15 \, x\right )} e^{\left (-\frac {2 \, e^{\left (e^{\left (\frac {4 \, x^{2} + 5 \, x - 2}{x}\right )}\right )} + \log \left (x^{2}\right ) - 10}{e^{\left (e^{\left (\frac {4 \, x^{2} + 5 \, x - 2}{x}\right )}\right )} - 5}\right )}}{x^{3} e^{\left (2 \, e^{\left (\frac {4 \, x^{2} + 5 \, x - 2}{x}\right )}\right )} - 10 \, x^{3} e^{\left (e^{\left (\frac {4 \, x^{2} + 5 \, x - 2}{x}\right )}\right )} + 25 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.74, size = 84, normalized size = 2.27 \begin {gather*} \frac {{\mathrm {e}}^{\frac {10}{{\mathrm {e}}^{{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^5\,{\mathrm {e}}^{-\frac {2}{x}}}-5}}\,{\mathrm {e}}^{-\frac {2\,{\mathrm {e}}^{{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^5\,{\mathrm {e}}^{-\frac {2}{x}}}}{{\mathrm {e}}^{{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^5\,{\mathrm {e}}^{-\frac {2}{x}}}-5}}}{x\,{\left (x^2\right )}^{\frac {1}{{\mathrm {e}}^{{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^5\,{\mathrm {e}}^{-\frac {2}{x}}}-5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 21.59, size = 42, normalized size = 1.14 \begin {gather*} \frac {e^{\frac {- 2 e^{e^{\frac {4 x^{2} + 5 x - 2}{x}}} - \log {\left (x^{2} \right )} + 10}{e^{e^{\frac {4 x^{2} + 5 x - 2}{x}}} - 5}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________