Optimal. Leaf size=24 \[ e^{1+\left (1+e^x+e^{\frac {2 x}{5+x}}-3 x\right ) x} \]
________________________________________________________________________________________
Rubi [A] time = 3.84, antiderivative size = 27, normalized size of antiderivative = 1.12, number of steps used = 2, number of rules used = 2, integrand size = 89, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {27, 6706} \begin {gather*} e^{-3 x^2+e^x x+e^{\frac {2 x}{x+5}} x+x+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{1+x+e^x x+e^{\frac {2 x}{5+x}} x-3 x^2} \left (25-140 x-59 x^2-6 x^3+e^{\frac {2 x}{5+x}} \left (25+20 x+x^2\right )+e^x \left (25+35 x+11 x^2+x^3\right )\right )}{(5+x)^2} \, dx\\ &=e^{1+x+e^x x+e^{\frac {2 x}{5+x}} x-3 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.29, size = 28, normalized size = 1.17 \begin {gather*} e^{1+x+e^x x+e^{2-\frac {10}{5+x}} x-3 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 24, normalized size = 1.00 \begin {gather*} e^{\left (-3 \, x^{2} + x e^{x} + x e^{\left (\frac {2 \, x}{x + 5}\right )} + x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.55, size = 24, normalized size = 1.00 \begin {gather*} e^{\left (-3 \, x^{2} + x e^{x} + x e^{\left (\frac {2 \, x}{x + 5}\right )} + x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 25, normalized size = 1.04
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{x} x +x \,{\mathrm e}^{\frac {2 x}{5+x}}-3 x^{2}+x +1}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 25, normalized size = 1.04 \begin {gather*} e^{\left (-3 \, x^{2} + x e^{x} + x e^{\left (-\frac {10}{x + 5} + 2\right )} + x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.33, size = 28, normalized size = 1.17 \begin {gather*} {\mathrm {e}}^{x\,{\mathrm {e}}^x}\,\mathrm {e}\,{\mathrm {e}}^{-3\,x^2}\,{\mathrm {e}}^{x\,{\mathrm {e}}^{\frac {2\,x}{x+5}}}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.73, size = 24, normalized size = 1.00 \begin {gather*} e^{- 3 x^{2} + x e^{x} + x e^{\frac {2 x}{x + 5}} + x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________