Optimal. Leaf size=33 \[ e^{4-e^x+\frac {x}{5-e^4-e^{e^x}-x+x^2}} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.49, size = 30, normalized size = 0.91 \begin {gather*} e^{4-e^x-\frac {x}{-5+e^4+e^{e^x}+x-x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.96, size = 59, normalized size = 1.79 \begin {gather*} e^{\left (\frac {4 \, x^{2} - {\left (x^{2} - x - e^{4} + 5\right )} e^{x} + {\left (e^{x} - 4\right )} e^{\left (e^{x}\right )} - 3 \, x - 4 \, e^{4} + 20}{x^{2} - x - e^{4} - e^{\left (e^{x}\right )} + 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 1.08, size = 0, normalized size = 0.00 \[\int \frac {\left (-{\mathrm e}^{x} {\mathrm e}^{2 \,{\mathrm e}^{x}}+\left (\left (-2 \,{\mathrm e}^{4}+2 x^{2}-x +10\right ) {\mathrm e}^{x}-1\right ) {\mathrm e}^{{\mathrm e}^{x}}+\left (-{\mathrm e}^{8}+\left (2 x^{2}-2 x +10\right ) {\mathrm e}^{4}-x^{4}+2 x^{3}-11 x^{2}+10 x -25\right ) {\mathrm e}^{x}-{\mathrm e}^{4}-x^{2}+5\right ) {\mathrm e}^{\frac {\left (-{\mathrm e}^{x}+4\right ) {\mathrm e}^{{\mathrm e}^{x}}+\left (-{\mathrm e}^{4}+x^{2}-x +5\right ) {\mathrm e}^{x}+4 \,{\mathrm e}^{4}-4 x^{2}+3 x -20}{{\mathrm e}^{{\mathrm e}^{x}}+{\mathrm e}^{4}-x^{2}+x -5}}}{{\mathrm e}^{2 \,{\mathrm e}^{x}}+\left (2 \,{\mathrm e}^{4}-2 x^{2}+2 x -10\right ) {\mathrm e}^{{\mathrm e}^{x}}+{\mathrm e}^{8}+\left (-2 x^{2}+2 x -10\right ) {\mathrm e}^{4}+x^{4}-2 x^{3}+11 x^{2}-10 x +25}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.39, size = 28, normalized size = 0.85 \begin {gather*} e^{\left (\frac {x}{x^{2} - x - e^{4} - e^{\left (e^{x}\right )} + 5} - e^{x} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.96, size = 208, normalized size = 6.30 \begin {gather*} {\mathrm {e}}^{\frac {4\,{\mathrm {e}}^{{\mathrm {e}}^x}}{x+{\mathrm {e}}^{{\mathrm {e}}^x}+{\mathrm {e}}^4-x^2-5}}\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^4\,{\mathrm {e}}^x}{x+{\mathrm {e}}^{{\mathrm {e}}^x}+{\mathrm {e}}^4-x^2-5}}\,{\mathrm {e}}^{-\frac {x\,{\mathrm {e}}^x}{x+{\mathrm {e}}^{{\mathrm {e}}^x}+{\mathrm {e}}^4-x^2-5}}\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^4}{x+{\mathrm {e}}^{{\mathrm {e}}^x}+{\mathrm {e}}^4-x^2-5}}\,{\mathrm {e}}^{\frac {3\,x}{x+{\mathrm {e}}^{{\mathrm {e}}^x}+{\mathrm {e}}^4-x^2-5}}\,{\mathrm {e}}^{\frac {x^2\,{\mathrm {e}}^x}{x+{\mathrm {e}}^{{\mathrm {e}}^x}+{\mathrm {e}}^4-x^2-5}}\,{\mathrm {e}}^{-\frac {4\,x^2}{x+{\mathrm {e}}^{{\mathrm {e}}^x}+{\mathrm {e}}^4-x^2-5}}\,{\mathrm {e}}^{\frac {5\,{\mathrm {e}}^x}{x+{\mathrm {e}}^{{\mathrm {e}}^x}+{\mathrm {e}}^4-x^2-5}}\,{\mathrm {e}}^{-\frac {20}{x+{\mathrm {e}}^{{\mathrm {e}}^x}+{\mathrm {e}}^4-x^2-5}}\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^x}{x+{\mathrm {e}}^{{\mathrm {e}}^x}+{\mathrm {e}}^4-x^2-5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.43, size = 54, normalized size = 1.64 \begin {gather*} e^{\frac {- 4 x^{2} + 3 x + \left (4 - e^{x}\right ) e^{e^{x}} + \left (x^{2} - x - e^{4} + 5\right ) e^{x} - 20 + 4 e^{4}}{- x^{2} + x + e^{e^{x}} - 5 + e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________