Optimal. Leaf size=20 \[ \log ^2\left (\frac {1}{\left (\frac {5 x^2}{3}+(1+x) (4+x)\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [C] time = 0.53, antiderivative size = 265, normalized size of antiderivative = 13.25, number of steps used = 20, number of rules used = 9, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.209, Rules used = {2528, 2524, 2055, 2418, 2390, 2301, 2394, 2393, 2391} \begin {gather*} -8 \text {Li}_2\left (-\frac {16 i x-\sqrt {159}+15 i}{2 \sqrt {159}}\right )-8 \text {Li}_2\left (\frac {16 i x+\sqrt {159}+15 i}{2 \sqrt {159}}\right )-4 \log \left (\frac {9}{64 x^4+240 x^3+417 x^2+360 x+144}\right ) \log \left (16 x-i \sqrt {159}+15\right )-4 \log \left (16 x+i \sqrt {159}+15\right ) \log \left (\frac {9}{64 x^4+240 x^3+417 x^2+360 x+144}\right )-4 \log ^2\left (16 x-i \sqrt {159}+15\right )-4 \log ^2\left (16 x+i \sqrt {159}+15\right )-8 \log \left (-\frac {i \left (16 x+i \sqrt {159}+15\right )}{2 \sqrt {159}}\right ) \log \left (16 x-i \sqrt {159}+15\right )-8 \log \left (\frac {i \left (16 x-i \sqrt {159}+15\right )}{2 \sqrt {159}}\right ) \log \left (16 x+i \sqrt {159}+15\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2055
Rule 2301
Rule 2390
Rule 2391
Rule 2393
Rule 2394
Rule 2418
Rule 2524
Rule 2528
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {64 \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )}{15-i \sqrt {159}+16 x}-\frac {64 \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )}{15+i \sqrt {159}+16 x}\right ) \, dx\\ &=-\left (64 \int \frac {\log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )}{15-i \sqrt {159}+16 x} \, dx\right )-64 \int \frac {\log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )}{15+i \sqrt {159}+16 x} \, dx\\ &=-4 \log \left (15-i \sqrt {159}+16 x\right ) \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )-4 \log \left (15+i \sqrt {159}+16 x\right ) \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )-4 \int \frac {\left (360+834 x+720 x^2+256 x^3\right ) \log \left (15-i \sqrt {159}+16 x\right )}{144+360 x+417 x^2+240 x^3+64 x^4} \, dx-4 \int \frac {\left (360+834 x+720 x^2+256 x^3\right ) \log \left (15+i \sqrt {159}+16 x\right )}{144+360 x+417 x^2+240 x^3+64 x^4} \, dx\\ &=-4 \log \left (15-i \sqrt {159}+16 x\right ) \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )-4 \log \left (15+i \sqrt {159}+16 x\right ) \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )-4 \int \frac {(30+32 x) \log \left (15-i \sqrt {159}+16 x\right )}{12+15 x+8 x^2} \, dx-4 \int \frac {(30+32 x) \log \left (15+i \sqrt {159}+16 x\right )}{12+15 x+8 x^2} \, dx\\ &=-4 \log \left (15-i \sqrt {159}+16 x\right ) \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )-4 \log \left (15+i \sqrt {159}+16 x\right ) \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )-4 \int \left (\frac {32 \log \left (15-i \sqrt {159}+16 x\right )}{15-i \sqrt {159}+16 x}+\frac {32 \log \left (15-i \sqrt {159}+16 x\right )}{15+i \sqrt {159}+16 x}\right ) \, dx-4 \int \left (\frac {32 \log \left (15+i \sqrt {159}+16 x\right )}{15-i \sqrt {159}+16 x}+\frac {32 \log \left (15+i \sqrt {159}+16 x\right )}{15+i \sqrt {159}+16 x}\right ) \, dx\\ &=-4 \log \left (15-i \sqrt {159}+16 x\right ) \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )-4 \log \left (15+i \sqrt {159}+16 x\right ) \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )-128 \int \frac {\log \left (15-i \sqrt {159}+16 x\right )}{15-i \sqrt {159}+16 x} \, dx-128 \int \frac {\log \left (15-i \sqrt {159}+16 x\right )}{15+i \sqrt {159}+16 x} \, dx-128 \int \frac {\log \left (15+i \sqrt {159}+16 x\right )}{15-i \sqrt {159}+16 x} \, dx-128 \int \frac {\log \left (15+i \sqrt {159}+16 x\right )}{15+i \sqrt {159}+16 x} \, dx\\ &=-8 \log \left (\frac {i \left (15-i \sqrt {159}+16 x\right )}{2 \sqrt {159}}\right ) \log \left (15+i \sqrt {159}+16 x\right )-8 \log \left (15-i \sqrt {159}+16 x\right ) \log \left (-\frac {i \left (15+i \sqrt {159}+16 x\right )}{2 \sqrt {159}}\right )-4 \log \left (15-i \sqrt {159}+16 x\right ) \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )-4 \log \left (15+i \sqrt {159}+16 x\right ) \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )-8 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,15-i \sqrt {159}+16 x\right )-8 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,15+i \sqrt {159}+16 x\right )+128 \int \frac {\log \left (\frac {16 \left (15-i \sqrt {159}+16 x\right )}{16 \left (15-i \sqrt {159}\right )-16 \left (15+i \sqrt {159}\right )}\right )}{15+i \sqrt {159}+16 x} \, dx+128 \int \frac {\log \left (\frac {16 \left (15+i \sqrt {159}+16 x\right )}{-16 \left (15-i \sqrt {159}\right )+16 \left (15+i \sqrt {159}\right )}\right )}{15-i \sqrt {159}+16 x} \, dx\\ &=-4 \log ^2\left (15-i \sqrt {159}+16 x\right )-8 \log \left (\frac {i \left (15-i \sqrt {159}+16 x\right )}{2 \sqrt {159}}\right ) \log \left (15+i \sqrt {159}+16 x\right )-4 \log ^2\left (15+i \sqrt {159}+16 x\right )-8 \log \left (15-i \sqrt {159}+16 x\right ) \log \left (-\frac {i \left (15+i \sqrt {159}+16 x\right )}{2 \sqrt {159}}\right )-4 \log \left (15-i \sqrt {159}+16 x\right ) \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )-4 \log \left (15+i \sqrt {159}+16 x\right ) \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )+8 \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {16 x}{16 \left (15-i \sqrt {159}\right )-16 \left (15+i \sqrt {159}\right )}\right )}{x} \, dx,x,15+i \sqrt {159}+16 x\right )+8 \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {16 x}{-16 \left (15-i \sqrt {159}\right )+16 \left (15+i \sqrt {159}\right )}\right )}{x} \, dx,x,15-i \sqrt {159}+16 x\right )\\ &=-4 \log ^2\left (15-i \sqrt {159}+16 x\right )-8 \log \left (\frac {i \left (15-i \sqrt {159}+16 x\right )}{2 \sqrt {159}}\right ) \log \left (15+i \sqrt {159}+16 x\right )-4 \log ^2\left (15+i \sqrt {159}+16 x\right )-8 \log \left (15-i \sqrt {159}+16 x\right ) \log \left (-\frac {i \left (15+i \sqrt {159}+16 x\right )}{2 \sqrt {159}}\right )-4 \log \left (15-i \sqrt {159}+16 x\right ) \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )-4 \log \left (15+i \sqrt {159}+16 x\right ) \log \left (\frac {9}{144+360 x+417 x^2+240 x^3+64 x^4}\right )-8 \text {Li}_2\left (-\frac {15 i-\sqrt {159}+16 i x}{2 \sqrt {159}}\right )-8 \text {Li}_2\left (\frac {15 i+\sqrt {159}+16 i x}{2 \sqrt {159}}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.07, size = 243, normalized size = 12.15 \begin {gather*} -4 \left (\log ^2\left (15-i \sqrt {159}+16 x\right )+2 \log \left (\frac {i \left (15-i \sqrt {159}+16 x\right )}{2 \sqrt {159}}\right ) \log \left (15+i \sqrt {159}+16 x\right )+\log ^2\left (15+i \sqrt {159}+16 x\right )+2 \log \left (15-i \sqrt {159}+16 x\right ) \log \left (-\frac {i \left (15+i \sqrt {159}+16 x\right )}{2 \sqrt {159}}\right )+\log \left (15-i \sqrt {159}+16 x\right ) \log \left (\frac {9}{\left (12+15 x+8 x^2\right )^2}\right )+\log \left (15+i \sqrt {159}+16 x\right ) \log \left (\frac {9}{\left (12+15 x+8 x^2\right )^2}\right )+2 \text {Li}_2\left (\frac {i \left (15-i \sqrt {159}+16 x\right )}{2 \sqrt {159}}\right )+2 \text {Li}_2\left (-\frac {i \left (15+i \sqrt {159}+16 x\right )}{2 \sqrt {159}}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 27, normalized size = 1.35 \begin {gather*} \log \left (\frac {9}{64 \, x^{4} + 240 \, x^{3} + 417 \, x^{2} + 360 \, x + 144}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 27, normalized size = 1.35 \begin {gather*} \log \left (\frac {9}{64 \, x^{4} + 240 \, x^{3} + 417 \, x^{2} + 360 \, x + 144}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.60, size = 28, normalized size = 1.40
method | result | size |
norman | \(\ln \left (\frac {9}{64 x^{4}+240 x^{3}+417 x^{2}+360 x +144}\right )^{2}\) | \(28\) |
default | \(-8 \ln \relax (3) \ln \left (8 x^{2}+15 x +12\right )-4 \ln \left (x +\frac {15}{16}-\frac {i \sqrt {159}}{16}\right ) \ln \left (\frac {1}{64 x^{4}+240 x^{3}+417 x^{2}+360 x +144}\right )-8 \dilog \left (-\frac {i \left (\frac {15}{2}+\frac {i \sqrt {159}}{2}+8 x \right ) \sqrt {159}}{159}\right )-8 \ln \left (x +\frac {15}{16}-\frac {i \sqrt {159}}{16}\right ) \ln \left (-\frac {i \left (\frac {15}{2}+\frac {i \sqrt {159}}{2}+8 x \right ) \sqrt {159}}{159}\right )-4 \ln \left (x +\frac {15}{16}-\frac {i \sqrt {159}}{16}\right )^{2}-4 \ln \left (x +\frac {15}{16}+\frac {i \sqrt {159}}{16}\right ) \ln \left (\frac {1}{64 x^{4}+240 x^{3}+417 x^{2}+360 x +144}\right )-8 \dilog \left (\frac {i \left (\frac {15}{2}-\frac {i \sqrt {159}}{2}+8 x \right ) \sqrt {159}}{159}\right )-8 \ln \left (x +\frac {15}{16}+\frac {i \sqrt {159}}{16}\right ) \ln \left (\frac {i \left (\frac {15}{2}-\frac {i \sqrt {159}}{2}+8 x \right ) \sqrt {159}}{159}\right )-4 \ln \left (x +\frac {15}{16}+\frac {i \sqrt {159}}{16}\right )^{2}\) | \(215\) |
risch | \(-8 \ln \relax (3) \ln \left (8 x^{2}+15 x +12\right )-4 \ln \left (x +\frac {15}{16}-\frac {i \sqrt {159}}{16}\right ) \ln \left (\frac {1}{64 x^{4}+240 x^{3}+417 x^{2}+360 x +144}\right )-8 \dilog \left (-\frac {i \left (\frac {15}{2}+\frac {i \sqrt {159}}{2}+8 x \right ) \sqrt {159}}{159}\right )-8 \ln \left (x +\frac {15}{16}-\frac {i \sqrt {159}}{16}\right ) \ln \left (-\frac {i \left (\frac {15}{2}+\frac {i \sqrt {159}}{2}+8 x \right ) \sqrt {159}}{159}\right )-4 \ln \left (x +\frac {15}{16}-\frac {i \sqrt {159}}{16}\right )^{2}-4 \ln \left (x +\frac {15}{16}+\frac {i \sqrt {159}}{16}\right ) \ln \left (\frac {1}{64 x^{4}+240 x^{3}+417 x^{2}+360 x +144}\right )-8 \dilog \left (\frac {i \left (\frac {15}{2}-\frac {i \sqrt {159}}{2}+8 x \right ) \sqrt {159}}{159}\right )-8 \ln \left (x +\frac {15}{16}+\frac {i \sqrt {159}}{16}\right ) \ln \left (\frac {i \left (\frac {15}{2}-\frac {i \sqrt {159}}{2}+8 x \right ) \sqrt {159}}{159}\right )-4 \ln \left (x +\frac {15}{16}+\frac {i \sqrt {159}}{16}\right )^{2}\) | \(215\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 54, normalized size = 2.70 \begin {gather*} -4 \, \log \left (8 \, x^{2} + 15 \, x + 12\right )^{2} - 4 \, \log \left (8 \, x^{2} + 15 \, x + 12\right ) \log \left (\frac {9}{64 \, x^{4} + 240 \, x^{3} + 417 \, x^{2} + 360 \, x + 144}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 41, normalized size = 2.05 \begin {gather*} {\ln \left (64\,x^4+240\,x^3+417\,x^2+360\,x+144\right )}^2-4\,\ln \left ({\left (8\,x^2+15\,x+12\right )}^2\right )\,\ln \relax (3) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 24, normalized size = 1.20 \begin {gather*} \log {\left (\frac {9}{64 x^{4} + 240 x^{3} + 417 x^{2} + 360 x + 144} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________