Optimal. Leaf size=30 \[ \frac {5}{4} e^{-e+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}} \]
________________________________________________________________________________________
Rubi [F] time = 5.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-\frac {5}{x^2}+\frac {e^{-\frac {5}{x^2}} \left (-x^3+e^{\frac {5}{x^2}} \left (-e x^2+x^3+x^2 \log (5)\right )-e^{\frac {5}{x^2}} \log ^2(x)\right )}{x^2}\right ) \left (-10 x-x^3+e^{\frac {5}{x^2}} x^3-2 e^{\frac {5}{x^2}} \log (x)+2 e^{\frac {5}{x^2}} \log ^2(x)\right )}{4 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {\exp \left (-\frac {5}{x^2}+\frac {e^{-\frac {5}{x^2}} \left (-x^3+e^{\frac {5}{x^2}} \left (-e x^2+x^3+x^2 \log (5)\right )-e^{\frac {5}{x^2}} \log ^2(x)\right )}{x^2}\right ) \left (-10 x-x^3+e^{\frac {5}{x^2}} x^3-2 e^{\frac {5}{x^2}} \log (x)+2 e^{\frac {5}{x^2}} \log ^2(x)\right )}{x^3} \, dx\\ &=\frac {1}{4} \int \frac {5 e^{-e-\frac {5}{x^2}+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}} \left (-10 x+\left (-1+e^{\frac {5}{x^2}}\right ) x^3-2 e^{\frac {5}{x^2}} \log (x)+2 e^{\frac {5}{x^2}} \log ^2(x)\right )}{x^3} \, dx\\ &=\frac {5}{4} \int \frac {e^{-e-\frac {5}{x^2}+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}} \left (-10 x+\left (-1+e^{\frac {5}{x^2}}\right ) x^3-2 e^{\frac {5}{x^2}} \log (x)+2 e^{\frac {5}{x^2}} \log ^2(x)\right )}{x^3} \, dx\\ &=\frac {5}{4} \int \left (\frac {e^{-e-\frac {5}{x^2}+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}} \left (-10-x^2\right )}{x^2}+\frac {e^{-e+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}} \left (x^3-2 \log (x)+2 \log ^2(x)\right )}{x^3}\right ) \, dx\\ &=\frac {5}{4} \int \frac {e^{-e-\frac {5}{x^2}+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}} \left (-10-x^2\right )}{x^2} \, dx+\frac {5}{4} \int \frac {e^{-e+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}} \left (x^3-2 \log (x)+2 \log ^2(x)\right )}{x^3} \, dx\\ &=\frac {5}{4} \int \left (-e^{-e-\frac {5}{x^2}+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}}-\frac {10 e^{-e-\frac {5}{x^2}+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}}}{x^2}\right ) \, dx+\frac {5}{4} \int \left (e^{-e+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}}-\frac {2 e^{-e+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}} \log (x)}{x^3}+\frac {2 e^{-e+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}} \log ^2(x)}{x^3}\right ) \, dx\\ &=\frac {5}{4} \int e^{-e+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}} \, dx-\frac {5}{4} \int e^{-e-\frac {5}{x^2}+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}} \, dx-\frac {5}{2} \int \frac {e^{-e+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}} \log (x)}{x^3} \, dx+\frac {5}{2} \int \frac {e^{-e+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}} \log ^2(x)}{x^3} \, dx-\frac {25}{2} \int \frac {e^{-e-\frac {5}{x^2}+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.33, size = 30, normalized size = 1.00 \begin {gather*} \frac {5}{4} e^{-e+x-e^{-\frac {5}{x^2}} x-\frac {\log ^2(x)}{x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 61, normalized size = 2.03 \begin {gather*} \frac {1}{4} \, e^{\left (-\frac {{\left (x^{3} + e^{\left (\frac {5}{x^{2}}\right )} \log \relax (x)^{2} - {\left (x^{3} - x^{2} e + x^{2} \log \relax (5) - 5\right )} e^{\left (\frac {5}{x^{2}}\right )}\right )} e^{\left (-\frac {5}{x^{2}}\right )}}{x^{2}} + \frac {5}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{3} e^{\left (\frac {5}{x^{2}}\right )} - x^{3} + 2 \, e^{\left (\frac {5}{x^{2}}\right )} \log \relax (x)^{2} - 2 \, e^{\left (\frac {5}{x^{2}}\right )} \log \relax (x) - 10 \, x\right )} e^{\left (-\frac {{\left (x^{3} + e^{\left (\frac {5}{x^{2}}\right )} \log \relax (x)^{2} - {\left (x^{3} - x^{2} e + x^{2} \log \relax (5)\right )} e^{\left (\frac {5}{x^{2}}\right )}\right )} e^{\left (-\frac {5}{x^{2}}\right )}}{x^{2}} - \frac {5}{x^{2}}\right )}}{4 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 35, normalized size = 1.17
method | result | size |
risch | \(\frac {5 \,{\mathrm e}^{-\frac {{\mathrm e}^{-\frac {5}{x^{2}}} x^{3}+x^{2} {\mathrm e}-x^{3}+\ln \relax (x )^{2}}{x^{2}}}}{4}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.13, size = 27, normalized size = 0.90 \begin {gather*} \frac {5}{4} \, e^{\left (-x e^{\left (-\frac {5}{x^{2}}\right )} + x - \frac {\log \relax (x)^{2}}{x^{2}} - e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.13, size = 29, normalized size = 0.97 \begin {gather*} \frac {5\,{\mathrm {e}}^{-\mathrm {e}}\,{\mathrm {e}}^{-x\,{\mathrm {e}}^{-\frac {5}{x^2}}}\,{\mathrm {e}}^x\,{\mathrm {e}}^{-\frac {{\ln \relax (x)}^2}{x^2}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.57, size = 51, normalized size = 1.70 \begin {gather*} \frac {e^{\frac {\left (- x^{3} + \left (x^{3} - e x^{2} + x^{2} \log {\relax (5 )}\right ) e^{\frac {5}{x^{2}}} - e^{\frac {5}{x^{2}}} \log {\relax (x )}^{2}\right ) e^{- \frac {5}{x^{2}}}}{x^{2}}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________