Optimal. Leaf size=25 \[ \frac {4 e^{4-\frac {14 x}{5}}}{x^2 \log ^2\left (x^2\right ) \log (\log (5))} \]
________________________________________________________________________________________
Rubi [F] time = 1.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-80 e^{\frac {2}{5} (10-7 x)}+e^{\frac {2}{5} (10-7 x)} (-40-56 x) \log \left (x^2\right )}{5 x^3 \log ^3\left (x^2\right ) \log (\log (5))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-80 e^{\frac {2}{5} (10-7 x)}+e^{\frac {2}{5} (10-7 x)} (-40-56 x) \log \left (x^2\right )}{x^3 \log ^3\left (x^2\right )} \, dx}{5 \log (\log (5))}\\ &=\frac {\int \frac {8 e^{4-\frac {14 x}{5}} \left (-10-(5+7 x) \log \left (x^2\right )\right )}{x^3 \log ^3\left (x^2\right )} \, dx}{5 \log (\log (5))}\\ &=\frac {8 \int \frac {e^{4-\frac {14 x}{5}} \left (-10-(5+7 x) \log \left (x^2\right )\right )}{x^3 \log ^3\left (x^2\right )} \, dx}{5 \log (\log (5))}\\ &=\frac {8 \int \left (-\frac {10 e^{4-\frac {14 x}{5}}}{x^3 \log ^3\left (x^2\right )}+\frac {e^{4-\frac {14 x}{5}} (-5-7 x)}{x^3 \log ^2\left (x^2\right )}\right ) \, dx}{5 \log (\log (5))}\\ &=\frac {8 \int \frac {e^{4-\frac {14 x}{5}} (-5-7 x)}{x^3 \log ^2\left (x^2\right )} \, dx}{5 \log (\log (5))}-\frac {16 \int \frac {e^{4-\frac {14 x}{5}}}{x^3 \log ^3\left (x^2\right )} \, dx}{\log (\log (5))}\\ &=\frac {8 \int \left (-\frac {5 e^{4-\frac {14 x}{5}}}{x^3 \log ^2\left (x^2\right )}-\frac {7 e^{4-\frac {14 x}{5}}}{x^2 \log ^2\left (x^2\right )}\right ) \, dx}{5 \log (\log (5))}-\frac {16 \int \frac {e^{4-\frac {14 x}{5}}}{x^3 \log ^3\left (x^2\right )} \, dx}{\log (\log (5))}\\ &=-\frac {8 \int \frac {e^{4-\frac {14 x}{5}}}{x^3 \log ^2\left (x^2\right )} \, dx}{\log (\log (5))}-\frac {56 \int \frac {e^{4-\frac {14 x}{5}}}{x^2 \log ^2\left (x^2\right )} \, dx}{5 \log (\log (5))}-\frac {16 \int \frac {e^{4-\frac {14 x}{5}}}{x^3 \log ^3\left (x^2\right )} \, dx}{\log (\log (5))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 25, normalized size = 1.00 \begin {gather*} \frac {4 e^{4-\frac {14 x}{5}}}{x^2 \log ^2\left (x^2\right ) \log (\log (5))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 22, normalized size = 0.88 \begin {gather*} \frac {4 \, e^{\left (-\frac {14}{5} \, x + 4\right )}}{x^{2} \log \left (x^{2}\right )^{2} \log \left (\log \relax (5)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.42, size = 22, normalized size = 0.88 \begin {gather*} \frac {4 \, e^{\left (-\frac {14}{5} \, x + 4\right )}}{x^{2} \log \left (x^{2}\right )^{2} \log \left (\log \relax (5)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.08, size = 69, normalized size = 2.76
method | result | size |
risch | \(-\frac {16 \,{\mathrm e}^{-\frac {14 x}{5}+4}}{\ln \left (\ln \relax (5)\right ) x^{2} \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )^{2}}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 19, normalized size = 0.76 \begin {gather*} \frac {e^{\left (-\frac {14}{5} \, x + 4\right )}}{x^{2} \log \relax (x)^{2} \log \left (\log \relax (5)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.08, size = 22, normalized size = 0.88 \begin {gather*} \frac {4\,{\mathrm {e}}^{-\frac {14\,x}{5}}\,{\mathrm {e}}^4}{x^2\,{\ln \left (x^2\right )}^2\,\ln \left (\ln \relax (5)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 24, normalized size = 0.96 \begin {gather*} \frac {4 e^{4 - \frac {14 x}{5}}}{x^{2} \log {\left (x^{2} \right )}^{2} \log {\left (\log {\relax (5 )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________