Optimal. Leaf size=28 \[ -4+e^{\frac {e^{-3-x-\log ^2(x)}}{2+\log \left (\frac {3}{x}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 22.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-4-x+\frac {e^{-3-x-\log ^2(x)}}{2+\log \left (\frac {3}{x}\right )}-\log ^2(x)} \left (e (1-2 x)-e x \log \left (\frac {3}{x}\right )+\left (-4 e-2 e \log \left (\frac {3}{x}\right )\right ) \log (x)\right )}{4 x+4 x \log \left (\frac {3}{x}\right )+x \log ^2\left (\frac {3}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-3-x+\frac {e^{-3-x-\log ^2(x)}}{2+\log \left (\frac {3}{x}\right )}-\log ^2(x)} \left (1-2 x-x \log \left (\frac {3}{x}\right )-4 \log (x)-2 \log \left (\frac {3}{x}\right ) \log (x)\right )}{x \left (2+\log \left (\frac {3}{x}\right )\right )^2} \, dx\\ &=\int \left (\frac {e^{-3-x+\frac {e^{-3-x-\log ^2(x)}}{2+\log \left (\frac {3}{x}\right )}-\log ^2(x)} \left (1-2 x-x \log \left (\frac {3}{x}\right )\right )}{x \left (2+\log \left (\frac {3}{x}\right )\right )^2}-\frac {2 e^{-3-x+\frac {e^{-3-x-\log ^2(x)}}{2+\log \left (\frac {3}{x}\right )}-\log ^2(x)} \log (x)}{x \left (2+\log \left (\frac {3}{x}\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {e^{-3-x+\frac {e^{-3-x-\log ^2(x)}}{2+\log \left (\frac {3}{x}\right )}-\log ^2(x)} \log (x)}{x \left (2+\log \left (\frac {3}{x}\right )\right )} \, dx\right )+\int \frac {e^{-3-x+\frac {e^{-3-x-\log ^2(x)}}{2+\log \left (\frac {3}{x}\right )}-\log ^2(x)} \left (1-2 x-x \log \left (\frac {3}{x}\right )\right )}{x \left (2+\log \left (\frac {3}{x}\right )\right )^2} \, dx\\ &=-\left (2 \int \frac {e^{-3-x+\frac {e^{-3-x-\log ^2(x)}}{2+\log \left (\frac {3}{x}\right )}-\log ^2(x)} \log (x)}{x \left (2+\log \left (\frac {3}{x}\right )\right )} \, dx\right )+\int \left (\frac {e^{-3-x+\frac {e^{-3-x-\log ^2(x)}}{2+\log \left (\frac {3}{x}\right )}-\log ^2(x)}}{-2-\log \left (\frac {3}{x}\right )}+\frac {e^{-3-x+\frac {e^{-3-x-\log ^2(x)}}{2+\log \left (\frac {3}{x}\right )}-\log ^2(x)}}{x \left (2+\log \left (\frac {3}{x}\right )\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{-3-x+\frac {e^{-3-x-\log ^2(x)}}{2+\log \left (\frac {3}{x}\right )}-\log ^2(x)} \log (x)}{x \left (2+\log \left (\frac {3}{x}\right )\right )} \, dx\right )+\int \frac {e^{-3-x+\frac {e^{-3-x-\log ^2(x)}}{2+\log \left (\frac {3}{x}\right )}-\log ^2(x)}}{-2-\log \left (\frac {3}{x}\right )} \, dx+\int \frac {e^{-3-x+\frac {e^{-3-x-\log ^2(x)}}{2+\log \left (\frac {3}{x}\right )}-\log ^2(x)}}{x \left (2+\log \left (\frac {3}{x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.32, size = 26, normalized size = 0.93 \begin {gather*} e^{\frac {e^{-3-x-\log ^2(x)}}{2+\log \left (\frac {3}{x}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.53, size = 123, normalized size = 4.39 \begin {gather*} e^{\left (\log \relax (3)^{2} - 2 \, \log \relax (3) \log \left (\frac {3}{x}\right ) + \log \left (\frac {3}{x}\right )^{2} + x + \frac {2 \, {\left (\log \relax (3) - 1\right )} \log \left (\frac {3}{x}\right )^{2} - \log \left (\frac {3}{x}\right )^{3} - 2 \, \log \relax (3)^{2} - {\left (\log \relax (3)^{2} + x - 4 \, \log \relax (3) + 4\right )} \log \left (\frac {3}{x}\right ) - 2 \, x + e^{\left (-\log \relax (3)^{2} + 2 \, \log \relax (3) \log \left (\frac {3}{x}\right ) - \log \left (\frac {3}{x}\right )^{2} - x - 3\right )} - 8}{\log \left (\frac {3}{x}\right ) + 2} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (x e \log \left (\frac {3}{x}\right ) + {\left (2 \, x - 1\right )} e + 2 \, {\left (e \log \left (\frac {3}{x}\right ) + 2 \, e\right )} \log \relax (x)\right )} e^{\left (-\log \relax (x)^{2} - x + \frac {e^{\left (-\log \relax (x)^{2} - x - 3\right )}}{\log \left (\frac {3}{x}\right ) + 2} - 4\right )}}{x \log \left (\frac {3}{x}\right )^{2} + 4 \, x \log \left (\frac {3}{x}\right ) + 4 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.82, size = 25, normalized size = 0.89
method | result | size |
risch | \({\mathrm e}^{\frac {{\mathrm e}^{-3-\ln \relax (x )^{2}-x}}{\ln \relax (3)-\ln \relax (x )+2}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.77, size = 34, normalized size = 1.21 \begin {gather*} e^{\left (\frac {1}{{\left (e^{3} \log \relax (3) + 2 \, e^{3}\right )} e^{\left (\log \relax (x)^{2} + x\right )} - e^{\left (\log \relax (x)^{2} + x + 3\right )} \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.48, size = 25, normalized size = 0.89 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^{-{\ln \relax (x)}^2}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-3}}{\ln \left (\frac {1}{x}\right )+\ln \relax (3)+2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 3.19, size = 24, normalized size = 0.86 \begin {gather*} e^{\frac {e e^{- x - \log {\relax (x )}^{2} - 4}}{- \log {\relax (x )} + \log {\relax (3 )} + 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________