Optimal. Leaf size=22 \[ \frac {1}{81} e^{-2 x} x \left (x+4 \log ^2(7-x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-2 x} \left (-14 x+16 x^2-2 x^3+8 x \log (7-x)+\left (-28+60 x-8 x^2\right ) \log ^2(7-x)\right )}{81 (-7+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{81} \int \frac {e^{-2 x} \left (-14 x+16 x^2-2 x^3+8 x \log (7-x)+\left (-28+60 x-8 x^2\right ) \log ^2(7-x)\right )}{-7+x} \, dx\\ &=\frac {1}{81} \int \left (-2 e^{-2 x} (-1+x) x+\frac {8 e^{-2 x} x \log (7-x)}{-7+x}-4 e^{-2 x} (-1+2 x) \log ^2(7-x)\right ) \, dx\\ &=-\left (\frac {2}{81} \int e^{-2 x} (-1+x) x \, dx\right )-\frac {4}{81} \int e^{-2 x} (-1+2 x) \log ^2(7-x) \, dx+\frac {8}{81} \int \frac {e^{-2 x} x \log (7-x)}{-7+x} \, dx\\ &=-\frac {4}{81} e^{-2 x} \log (7-x)+\frac {56 \text {Ei}(2 (7-x)) \log (7-x)}{81 e^{14}}-\frac {2}{81} \int \left (-e^{-2 x} x+e^{-2 x} x^2\right ) \, dx-\frac {4}{81} \int \left (13 e^{-2 x} \log ^2(7-x)-2 e^{-2 x} (7-x) \log ^2(7-x)\right ) \, dx-\frac {8}{81} \int \frac {e^{-2 x}-\frac {14 \text {Ei}(14-2 x)}{e^{14}}}{14-2 x} \, dx\\ &=-\frac {4}{81} e^{-2 x} \log (7-x)+\frac {56 \text {Ei}(2 (7-x)) \log (7-x)}{81 e^{14}}+\frac {2}{81} \int e^{-2 x} x \, dx-\frac {2}{81} \int e^{-2 x} x^2 \, dx-\frac {8}{81} \int \left (-\frac {e^{-2 x}}{2 (-7+x)}+\frac {7 \text {Ei}(14-2 x)}{e^{14} (-7+x)}\right ) \, dx+\frac {8}{81} \int e^{-2 x} (7-x) \log ^2(7-x) \, dx-\frac {52}{81} \int e^{-2 x} \log ^2(7-x) \, dx\\ &=-\frac {1}{81} e^{-2 x} x+\frac {1}{81} e^{-2 x} x^2-\frac {4}{81} e^{-2 x} \log (7-x)+\frac {56 \text {Ei}(2 (7-x)) \log (7-x)}{81 e^{14}}+\frac {1}{81} \int e^{-2 x} \, dx-\frac {2}{81} \int e^{-2 x} x \, dx+\frac {4}{81} \int \frac {e^{-2 x}}{-7+x} \, dx+\frac {8}{81} \int e^{-2 x} (7-x) \log ^2(7-x) \, dx-\frac {52}{81} \int e^{-2 x} \log ^2(7-x) \, dx-\frac {56 \int \frac {\text {Ei}(14-2 x)}{-7+x} \, dx}{81 e^{14}}\\ &=-\frac {1}{162} e^{-2 x}+\frac {1}{81} e^{-2 x} x^2+\frac {4 \text {Ei}(2 (7-x))}{81 e^{14}}-\frac {4}{81} e^{-2 x} \log (7-x)+\frac {56 \text {Ei}(2 (7-x)) \log (7-x)}{81 e^{14}}-\frac {1}{81} \int e^{-2 x} \, dx+\frac {8}{81} \int e^{-2 x} (7-x) \log ^2(7-x) \, dx-\frac {52}{81} \int e^{-2 x} \log ^2(7-x) \, dx-\frac {56 \int \frac {\text {Ei}(14-2 x)}{-7+x} \, dx}{81 e^{14}}\\ &=\frac {1}{81} e^{-2 x} x^2+\frac {4 \text {Ei}(2 (7-x))}{81 e^{14}}-\frac {4}{81} e^{-2 x} \log (7-x)+\frac {56 \text {Ei}(2 (7-x)) \log (7-x)}{81 e^{14}}+\frac {8}{81} \int e^{-2 x} (7-x) \log ^2(7-x) \, dx-\frac {52}{81} \int e^{-2 x} \log ^2(7-x) \, dx-\frac {56 \int \frac {\text {Ei}(14-2 x)}{-7+x} \, dx}{81 e^{14}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.36, size = 59, normalized size = 2.68 \begin {gather*} \frac {1}{81} \int \frac {e^{-2 x} \left (-14 x+16 x^2-2 x^3+8 x \log (7-x)+\left (-28+60 x-8 x^2\right ) \log ^2(7-x)\right )}{-7+x} \, dx \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 34, normalized size = 1.55 \begin {gather*} 4 \, x e^{\left (-2 \, x - 4 \, \log \relax (3)\right )} \log \left (-x + 7\right )^{2} + x^{2} e^{\left (-2 \, x - 4 \, \log \relax (3)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.38, size = 25, normalized size = 1.14 \begin {gather*} \frac {4}{81} \, x e^{\left (-2 \, x\right )} \log \left (-x + 7\right )^{2} + \frac {1}{81} \, x^{2} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 1.18
method | result | size |
risch | \(\frac {4 x \,{\mathrm e}^{-2 x} \ln \left (-x +7\right )^{2}}{81}+\frac {x^{2} {\mathrm e}^{-2 x}}{81}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 25, normalized size = 1.14 \begin {gather*} \frac {4}{81} \, x e^{\left (-2 \, x\right )} \log \left (-x + 7\right )^{2} + \frac {1}{81} \, x^{2} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {{\mathrm {e}}^{-2\,x-4\,\ln \relax (3)}\,\left (14\,x-8\,x\,\ln \left (7-x\right )+{\ln \left (7-x\right )}^2\,\left (8\,x^2-60\,x+28\right )-16\,x^2+2\,x^3\right )}{x-7} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 19, normalized size = 0.86 \begin {gather*} \frac {\left (x^{2} + 4 x \log {\left (7 - x \right )}^{2}\right ) e^{- 2 x}}{81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________