Optimal. Leaf size=28 \[ \frac {e^{-e^{2 x} \left (1-x-x^2\right )^2}}{3 x^2} \]
________________________________________________________________________________________
Rubi [B] time = 1.01, antiderivative size = 90, normalized size of antiderivative = 3.21, number of steps used = 4, number of rules used = 4, integrand size = 88, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {1594, 6688, 12, 2288} \begin {gather*} \frac {e^{2 x-e^{2 x} \left (-x^2-x+1\right )^2} \left (-x^3-4 x^2-2 x+3\right )}{3 x \left (e^{2 x} (2 x+1) \left (-x^2-x+1\right )-e^{2 x} \left (-x^2-x+1\right )^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1594
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x-e^{2 x} \left (1-x-x^2\right )^2} \left (e^x \left (2-2 x-2 x^2\right )+e^{3 x} \left (1-x-x^2\right )^2 \left (-6 x^2-2 x^3\right )\right )}{x^3 \left (-3+3 x+3 x^2\right )} \, dx\\ &=\int \frac {2 e^{-e^{2 x} \left (-1+x+x^2\right )^2} \left (-1-e^{2 x} x^2 \left (-3+2 x+4 x^2+x^3\right )\right )}{3 x^3} \, dx\\ &=\frac {2}{3} \int \frac {e^{-e^{2 x} \left (-1+x+x^2\right )^2} \left (-1-e^{2 x} x^2 \left (-3+2 x+4 x^2+x^3\right )\right )}{x^3} \, dx\\ &=\frac {e^{2 x-e^{2 x} \left (1-x-x^2\right )^2} \left (3-2 x-4 x^2-x^3\right )}{3 x \left (e^{2 x} (1+2 x) \left (1-x-x^2\right )-e^{2 x} \left (1-x-x^2\right )^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 24, normalized size = 0.86 \begin {gather*} \frac {e^{-e^{2 x} \left (-1+x+x^2\right )^2}}{3 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 30, normalized size = 1.07 \begin {gather*} \frac {e^{\left (-{\left (x^{4} + 2 \, x^{3} - x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x\right )}\right )}}{3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left ({\left (x^{3} + 3 \, x^{2}\right )} e^{\left (3 \, x + 2 \, \log \left (-x^{2} - x + 1\right )\right )} + {\left (x^{2} + x - 1\right )} e^{x}\right )} e^{\left (-x - e^{\left (2 \, x + 2 \, \log \left (-x^{2} - x + 1\right )\right )}\right )}}{3 \, {\left (x^{5} + x^{4} - x^{3}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.45, size = 21, normalized size = 0.75
method | result | size |
risch | \(\frac {{\mathrm e}^{-{\mathrm e}^{2 x} \left (x^{2}+x -1\right )^{2}}}{3 x^{2}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.77, size = 46, normalized size = 1.64 \begin {gather*} \frac {e^{\left (-x^{4} e^{\left (2 \, x\right )} - 2 \, x^{3} e^{\left (2 \, x\right )} + x^{2} e^{\left (2 \, x\right )} + 2 \, x e^{\left (2 \, x\right )} - e^{\left (2 \, x\right )}\right )}}{3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.15, size = 49, normalized size = 1.75 \begin {gather*} \frac {{\mathrm {e}}^{-{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{-2\,x^3\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{-x^4\,{\mathrm {e}}^{2\,x}}}{3\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 26, normalized size = 0.93 \begin {gather*} \frac {e^{x} e^{- x - \left (- x^{2} - x + 1\right )^{2} e^{2 x}}}{3 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________