Optimal. Leaf size=32 \[ \frac {e^4-2 (i \pi +\log (4))}{e^{e^{\frac {x^2}{9}}}+2 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 31, normalized size of antiderivative = 0.97, number of steps used = 3, number of rules used = 3, integrand size = 92, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {6688, 12, 6686} \begin {gather*} \frac {e^4-2 i \pi -2 \log (4)}{e^{e^{\frac {x^2}{9}}}+2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (9+e^{e^{\frac {x^2}{9}}+\frac {x^2}{9}} x\right ) \left (-e^4+2 i \pi +2 \log (4)\right )}{9 \left (e^{e^{\frac {x^2}{9}}}+2 x\right )^2} \, dx\\ &=-\left (\frac {1}{9} \left (2 \left (e^4-2 i \pi -\log (16)\right )\right ) \int \frac {9+e^{e^{\frac {x^2}{9}}+\frac {x^2}{9}} x}{\left (e^{e^{\frac {x^2}{9}}}+2 x\right )^2} \, dx\right )\\ &=\frac {e^4-2 i \pi -\log (16)}{e^{e^{\frac {x^2}{9}}}+2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 31, normalized size = 0.97 \begin {gather*} \frac {e^4-2 i \pi -2 \log (4)}{e^{e^{\frac {x^2}{9}}}+2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 42, normalized size = 1.31 \begin {gather*} \frac {{\left (-2 i \, \pi + e^{4} - 4 \, \log \relax (2)\right )} e^{\left (\frac {1}{9} \, x^{2}\right )}}{2 \, x e^{\left (\frac {1}{9} \, x^{2}\right )} + e^{\left (\frac {1}{9} \, x^{2} + e^{\left (\frac {1}{9} \, x^{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.45, size = 27, normalized size = 0.84 \begin {gather*} -\frac {2 i \, \pi - e^{4} + 4 \, \log \relax (2)}{2 \, x + e^{\left (e^{\left (\frac {1}{9} \, x^{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 28, normalized size = 0.88
method | result | size |
norman | \(\frac {{\mathrm e}^{4}-4 \ln \relax (2)-2 i \pi }{2 x +{\mathrm e}^{{\mathrm e}^{\frac {x^{2}}{9}}}}\) | \(28\) |
risch | \(-\frac {2 i \pi }{2 x +{\mathrm e}^{{\mathrm e}^{\frac {x^{2}}{9}}}}+\frac {{\mathrm e}^{4}}{2 x +{\mathrm e}^{{\mathrm e}^{\frac {x^{2}}{9}}}}-\frac {4 \ln \relax (2)}{2 x +{\mathrm e}^{{\mathrm e}^{\frac {x^{2}}{9}}}}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.69, size = 27, normalized size = 0.84 \begin {gather*} -\frac {2 i \, \pi - e^{4} + 4 \, \log \relax (2)}{2 \, x + e^{\left (e^{\left (\frac {1}{9} \, x^{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.24, size = 26, normalized size = 0.81 \begin {gather*} -\frac {\ln \left (16\right )-{\mathrm {e}}^4+\Pi \,2{}\mathrm {i}}{2\,x+{\mathrm {e}}^{{\mathrm {e}}^{\frac {x^2}{9}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.47, size = 26, normalized size = 0.81 \begin {gather*} \frac {- e^{4} + 4 \log {\relax (2 )} + 2 i \pi }{- 2 x - e^{e^{\frac {x^{2}}{9}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________