Optimal. Leaf size=20 \[ -2^{2 \left (1-e^{50}\right ) x}+e^{x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {2209, 2227, 2194} \begin {gather*} e^{x^2}-2^{2 \left (1-e^{50}\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 2209
Rule 2227
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 \int e^{x^2} x \, dx-\left (2 \left (1-e^{50}\right ) \log (2)\right ) \int 2^{2 x-2 e^{50} x} \, dx\\ &=e^{x^2}-\left (2 \left (1-e^{50}\right ) \log (2)\right ) \int 2^{2 \left (1-e^{50}\right ) x} \, dx\\ &=-2^{2 \left (1-e^{50}\right ) x}+e^{x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 0.90 \begin {gather*} -4^{x-e^{50} x}+e^{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 18, normalized size = 0.90 \begin {gather*} -2^{-2 \, x e^{50} + 2 \, x} + e^{\left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 36, normalized size = 1.80 \begin {gather*} -\frac {2^{-2 \, x e^{50} + 2 \, x} {\left (e^{50} - 1\right )} \log \relax (2)}{e^{50} \log \relax (2) - \log \relax (2)} + e^{\left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 18, normalized size = 0.90
method | result | size |
risch | \(-2^{-2 \left ({\mathrm e}^{50}-1\right ) x}+{\mathrm e}^{x^{2}}\) | \(18\) |
norman | \(-{\mathrm e}^{2 \left (-x \,{\mathrm e}^{50}+x \right ) \ln \relax (2)}+{\mathrm e}^{x^{2}}\) | \(23\) |
default | \(\frac {{\mathrm e}^{2 \left (-x \,{\mathrm e}^{50}+x \right ) \ln \relax (2)} {\mathrm e}^{50}}{-{\mathrm e}^{50}+1}-\frac {{\mathrm e}^{2 \left (-x \,{\mathrm e}^{50}+x \right ) \ln \relax (2)}}{-{\mathrm e}^{50}+1}+{\mathrm e}^{x^{2}}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 19, normalized size = 0.95 \begin {gather*} -\frac {1}{2} \cdot 2^{-2 \, x e^{50} + 2 \, x + 1} + e^{\left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.01, size = 21, normalized size = 1.05 \begin {gather*} {\mathrm {e}}^{x^2}-\frac {2^{2\,x}}{2^{2\,x\,{\mathrm {e}}^{50}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 17, normalized size = 0.85 \begin {gather*} e^{x^{2}} - e^{2 \left (- x e^{50} + x\right ) \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________