Optimal. Leaf size=23 \[ 1+5 x+2 \left (4 e^{e^{4+\frac {1}{x}-x}}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {7 x^2+4 e^{e^{\frac {1+4 x-x^2}{x}}+\frac {1+4 x-x^2}{x}} \left (-2-2 x^2\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (7-\frac {8 e^{4+e^{4+\frac {1}{x}-x}+\frac {1}{x}-x} \left (1+x^2\right )}{x^2}\right ) \, dx\\ &=7 x-8 \int \frac {e^{4+e^{4+\frac {1}{x}-x}+\frac {1}{x}-x} \left (1+x^2\right )}{x^2} \, dx\\ &=7 x-8 \int \left (e^{4+e^{4+\frac {1}{x}-x}+\frac {1}{x}-x}+\frac {e^{4+e^{4+\frac {1}{x}-x}+\frac {1}{x}-x}}{x^2}\right ) \, dx\\ &=7 x-8 \int e^{4+e^{4+\frac {1}{x}-x}+\frac {1}{x}-x} \, dx-8 \int \frac {e^{4+e^{4+\frac {1}{x}-x}+\frac {1}{x}-x}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 18, normalized size = 0.78 \begin {gather*} 8 e^{e^{4+\frac {1}{x}-x}}+7 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.77, size = 70, normalized size = 3.04 \begin {gather*} {\left (7 \, x e^{\left (-\frac {x^{2} - 4 \, x - 1}{x}\right )} + 2 \, e^{\left (-\frac {x^{2} - x e^{\left (-\frac {x^{2} - 4 \, x - 1}{x}\right )} - 2 \, x \log \relax (2) - 4 \, x - 1}{x}\right )}\right )} e^{\left (\frac {x^{2} - 4 \, x - 1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {7 \, x^{2} - 2 \, {\left (x^{2} + 1\right )} e^{\left (-\frac {x^{2} - 4 \, x - 1}{x} + e^{\left (-\frac {x^{2} - 4 \, x - 1}{x}\right )} + 2 \, \log \relax (2)\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 22, normalized size = 0.96
method | result | size |
risch | \(7 x +8 \,{\mathrm e}^{{\mathrm e}^{-\frac {x^{2}-4 x -1}{x}}}\) | \(22\) |
norman | \(\frac {7 x^{2}+2 x \,{\mathrm e}^{{\mathrm e}^{\frac {-x^{2}+4 x +1}{x}}+2 \ln \relax (2)}}{x}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 16, normalized size = 0.70 \begin {gather*} 7 \, x + 8 \, e^{\left (e^{\left (-x + \frac {1}{x} + 4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.08, size = 18, normalized size = 0.78 \begin {gather*} 7\,x+8\,{\mathrm {e}}^{{\mathrm {e}}^{-x}\,{\mathrm {e}}^{1/x}\,{\mathrm {e}}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 17, normalized size = 0.74 \begin {gather*} 7 x + 8 e^{e^{\frac {- x^{2} + 4 x + 1}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________