Optimal. Leaf size=24 \[ \frac {x}{-\frac {2 x^2}{4-x}+e^4 (4+x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 41, normalized size of antiderivative = 1.71, number of steps used = 4, number of rules used = 4, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {1994, 28, 1814, 8} \begin {gather*} -\frac {4 \left (4 e^4-\left (2+e^4\right ) x\right )}{\left (2+e^4\right ) \left (16 e^4-\left (2+e^4\right ) x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 28
Rule 1814
Rule 1994
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 x^2+e^4 \left (64-32 x+4 x^2\right )}{256 e^8-32 e^4 \left (2+e^4\right ) x^2+\left (2+e^4\right )^2 x^4} \, dx\\ &=\left (2+e^4\right )^2 \int \frac {8 x^2+e^4 \left (64-32 x+4 x^2\right )}{\left (-16 e^4 \left (2+e^4\right )+\left (2+e^4\right )^2 x^2\right )^2} \, dx\\ &=-\frac {4 \left (4 e^4-\left (2+e^4\right ) x\right )}{\left (2+e^4\right ) \left (16 e^4-\left (2+e^4\right ) x^2\right )}+\frac {\left (2+e^4\right ) \int 0 \, dx}{32 e^4}\\ &=-\frac {4 \left (4 e^4-\left (2+e^4\right ) x\right )}{\left (2+e^4\right ) \left (16 e^4-\left (2+e^4\right ) x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 37, normalized size = 1.54 \begin {gather*} -\frac {4 \left (e^4 (-4+x)+2 x\right )}{\left (2+e^4\right ) \left (2 x^2+e^4 \left (-16+x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.09, size = 37, normalized size = 1.54 \begin {gather*} -\frac {4 \, {\left ({\left (x - 4\right )} e^{4} + 2 \, x\right )}}{4 \, x^{2} + {\left (x^{2} - 16\right )} e^{8} + 4 \, {\left (x^{2} - 8\right )} e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 27, normalized size = 1.12
method | result | size |
norman | \(\frac {x^{2}-4 x}{x^{2} {\mathrm e}^{4}+2 x^{2}-16 \,{\mathrm e}^{4}}\) | \(27\) |
risch | \(\frac {-4 x +\frac {16 \,{\mathrm e}^{4}}{2+{\mathrm e}^{4}}}{x^{2} {\mathrm e}^{4}+2 x^{2}-16 \,{\mathrm e}^{4}}\) | \(34\) |
gosper | \(-\frac {4 \left (x \,{\mathrm e}^{4}-4 \,{\mathrm e}^{4}+2 x \right )}{\left (x^{2} {\mathrm e}^{4}+2 x^{2}-16 \,{\mathrm e}^{4}\right ) \left (2+{\mathrm e}^{4}\right )}\) | \(39\) |
default | \(\frac {4 \left ({\mathrm e}^{8}+4 \,{\mathrm e}^{4}+4\right ) \left (-\frac {\left ({\mathrm e}^{8} {\mathrm e}^{4}+4 \,{\mathrm e}^{8}+4 \,{\mathrm e}^{4}\right ) x}{\left ({\mathrm e}^{8}+4 \,{\mathrm e}^{4}+4\right ) \left ({\mathrm e}^{8}+2 \,{\mathrm e}^{4}\right )}+\frac {4 \,{\mathrm e}^{4}}{{\mathrm e}^{8}+4 \,{\mathrm e}^{4}+4}\right )}{x^{2} {\mathrm e}^{8}+4 x^{2} {\mathrm e}^{4}+4 x^{2}-16 \,{\mathrm e}^{8}-32 \,{\mathrm e}^{4}}\) | \(175\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 36, normalized size = 1.50 \begin {gather*} -\frac {4 \, {\left (x {\left (e^{4} + 2\right )} - 4 \, e^{4}\right )}}{x^{2} {\left (e^{8} + 4 \, e^{4} + 4\right )} - 16 \, e^{8} - 32 \, e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 31, normalized size = 1.29 \begin {gather*} \frac {4\,x-\frac {16\,{\mathrm {e}}^4}{{\mathrm {e}}^4+2}}{16\,{\mathrm {e}}^4-x^2\,\left ({\mathrm {e}}^4+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.50, size = 37, normalized size = 1.54 \begin {gather*} \frac {x \left (- 4 e^{4} - 8\right ) + 16 e^{4}}{x^{2} \left (4 + 4 e^{4} + e^{8}\right ) - 16 e^{8} - 32 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________