3.14.55 \(\int \frac {(25165824-524288 x^2) \log ^4(4)-524288 x^2 \log ^4(4) \log (x)+(-452984832 x+18874368 x^3-196608 x^5) \log ^3(4) \log ^2(x)+(75497472 x+6291456 x^3-163840 x^5) \log ^3(4) \log ^3(x)+(2717908992 x^2-169869312 x^4+3538944 x^6-24576 x^8) \log ^2(4) \log ^4(x)+(-1358954496 x^2+28311552 x^4+589824 x^6-12288 x^8) \log ^2(4) \log ^5(x)+(-5435817984 x^3+452984832 x^5-14155776 x^7+196608 x^9-1024 x^{11}) \log (4) \log ^6(x)+(8153726976 x^3-566231040 x^5+14155776 x^7-147456 x^9+512 x^{11}) \log (4) \log ^7(x)+(-16307453952 x^4+1698693120 x^6-70778880 x^8+1474560 x^{10}-15360 x^{12}+64 x^{14}) \log ^9(x)}{(-254803968 x+26542080 x^3-1105920 x^5+23040 x^7-240 x^9+x^{11}) \log ^9(x)} \, dx\)

Optimal. Leaf size=24 \[ \left (2 x+\frac {\log (4)}{\left (-3+\frac {x^2}{16}\right ) \log ^2(x)}\right )^4 \]

________________________________________________________________________________________

Rubi [F]  time = 3.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (25165824-524288 x^2\right ) \log ^4(4)-524288 x^2 \log ^4(4) \log (x)+\left (-452984832 x+18874368 x^3-196608 x^5\right ) \log ^3(4) \log ^2(x)+\left (75497472 x+6291456 x^3-163840 x^5\right ) \log ^3(4) \log ^3(x)+\left (2717908992 x^2-169869312 x^4+3538944 x^6-24576 x^8\right ) \log ^2(4) \log ^4(x)+\left (-1358954496 x^2+28311552 x^4+589824 x^6-12288 x^8\right ) \log ^2(4) \log ^5(x)+\left (-5435817984 x^3+452984832 x^5-14155776 x^7+196608 x^9-1024 x^{11}\right ) \log (4) \log ^6(x)+\left (8153726976 x^3-566231040 x^5+14155776 x^7-147456 x^9+512 x^{11}\right ) \log (4) \log ^7(x)+\left (-16307453952 x^4+1698693120 x^6-70778880 x^8+1474560 x^{10}-15360 x^{12}+64 x^{14}\right ) \log ^9(x)}{\left (-254803968 x+26542080 x^3-1105920 x^5+23040 x^7-240 x^9+x^{11}\right ) \log ^9(x)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[((25165824 - 524288*x^2)*Log[4]^4 - 524288*x^2*Log[4]^4*Log[x] + (-452984832*x + 18874368*x^3 - 196608*x^5
)*Log[4]^3*Log[x]^2 + (75497472*x + 6291456*x^3 - 163840*x^5)*Log[4]^3*Log[x]^3 + (2717908992*x^2 - 169869312*
x^4 + 3538944*x^6 - 24576*x^8)*Log[4]^2*Log[x]^4 + (-1358954496*x^2 + 28311552*x^4 + 589824*x^6 - 12288*x^8)*L
og[4]^2*Log[x]^5 + (-5435817984*x^3 + 452984832*x^5 - 14155776*x^7 + 196608*x^9 - 1024*x^11)*Log[4]*Log[x]^6 +
 (8153726976*x^3 - 566231040*x^5 + 14155776*x^7 - 147456*x^9 + 512*x^11)*Log[4]*Log[x]^7 + (-16307453952*x^4 +
 1698693120*x^6 - 70778880*x^8 + 1474560*x^10 - 15360*x^12 + 64*x^14)*Log[x]^9)/((-254803968*x + 26542080*x^3
- 1105920*x^5 + 23040*x^7 - 240*x^9 + x^11)*Log[x]^9),x]

[Out]

16*x^4 - 524288*Log[4]^4*Defer[Int][1/(x*(-48 + x^2)^4*Log[x]^9), x] - 524288*Log[4]^4*Defer[Int][x/((-48 + x^
2)^5*Log[x]^8), x] - 196608*Log[4]^3*Defer[Int][1/((-48 + x^2)^3*Log[x]^7), x] - 32768*Log[4]^3*Defer[Int][(48
 + 5*x^2)/((-48 + x^2)^4*Log[x]^6), x] - 24576*Log[4]^2*Defer[Int][x/((-48 + x^2)^2*Log[x]^5), x] - 12288*Log[
4]^2*Defer[Int][(x*(48 + x^2))/((-48 + x^2)^3*Log[x]^4), x] - 1024*Log[4]*Defer[Int][x^2/((-48 + x^2)*Log[x]^3
), x] + 512*Log[4]*Defer[Int][(x^2*(-144 + x^2))/((-48 + x^2)^2*Log[x]^2), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {64 \left (8 \log (4)+x \left (-48+x^2\right ) \log ^2(x)\right )^3 \left (16 \left (-48+x^2\right ) \log (4)+16 x^2 \log (4) \log (x)-x \left (-48+x^2\right )^2 \log ^3(x)\right )}{x \left (48-x^2\right )^5 \log ^9(x)} \, dx\\ &=64 \int \frac {\left (8 \log (4)+x \left (-48+x^2\right ) \log ^2(x)\right )^3 \left (16 \left (-48+x^2\right ) \log (4)+16 x^2 \log (4) \log (x)-x \left (-48+x^2\right )^2 \log ^3(x)\right )}{x \left (48-x^2\right )^5 \log ^9(x)} \, dx\\ &=64 \int \left (x^3-\frac {8192 \log ^4(4)}{x \left (-48+x^2\right )^4 \log ^9(x)}-\frac {8192 x \log ^4(4)}{\left (-48+x^2\right )^5 \log ^8(x)}-\frac {3072 \log ^3(4)}{\left (-48+x^2\right )^3 \log ^7(x)}-\frac {512 \left (48+5 x^2\right ) \log ^3(4)}{\left (-48+x^2\right )^4 \log ^6(x)}-\frac {384 x \log ^2(4)}{\left (-48+x^2\right )^2 \log ^5(x)}-\frac {192 x \left (48+x^2\right ) \log ^2(4)}{\left (-48+x^2\right )^3 \log ^4(x)}-\frac {16 x^2 \log (4)}{\left (-48+x^2\right ) \log ^3(x)}+\frac {8 x^2 \left (-144+x^2\right ) \log (4)}{\left (-48+x^2\right )^2 \log ^2(x)}\right ) \, dx\\ &=16 x^4+(512 \log (4)) \int \frac {x^2 \left (-144+x^2\right )}{\left (-48+x^2\right )^2 \log ^2(x)} \, dx-(1024 \log (4)) \int \frac {x^2}{\left (-48+x^2\right ) \log ^3(x)} \, dx-\left (12288 \log ^2(4)\right ) \int \frac {x \left (48+x^2\right )}{\left (-48+x^2\right )^3 \log ^4(x)} \, dx-\left (24576 \log ^2(4)\right ) \int \frac {x}{\left (-48+x^2\right )^2 \log ^5(x)} \, dx-\left (32768 \log ^3(4)\right ) \int \frac {48+5 x^2}{\left (-48+x^2\right )^4 \log ^6(x)} \, dx-\left (196608 \log ^3(4)\right ) \int \frac {1}{\left (-48+x^2\right )^3 \log ^7(x)} \, dx-\left (524288 \log ^4(4)\right ) \int \frac {1}{x \left (-48+x^2\right )^4 \log ^9(x)} \, dx-\left (524288 \log ^4(4)\right ) \int \frac {x}{\left (-48+x^2\right )^5 \log ^8(x)} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.63, size = 31, normalized size = 1.29 \begin {gather*} \frac {16 \left (8 \log (4)+x \left (-48+x^2\right ) \log ^2(x)\right )^4}{\left (-48+x^2\right )^4 \log ^8(x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((25165824 - 524288*x^2)*Log[4]^4 - 524288*x^2*Log[4]^4*Log[x] + (-452984832*x + 18874368*x^3 - 1966
08*x^5)*Log[4]^3*Log[x]^2 + (75497472*x + 6291456*x^3 - 163840*x^5)*Log[4]^3*Log[x]^3 + (2717908992*x^2 - 1698
69312*x^4 + 3538944*x^6 - 24576*x^8)*Log[4]^2*Log[x]^4 + (-1358954496*x^2 + 28311552*x^4 + 589824*x^6 - 12288*
x^8)*Log[4]^2*Log[x]^5 + (-5435817984*x^3 + 452984832*x^5 - 14155776*x^7 + 196608*x^9 - 1024*x^11)*Log[4]*Log[
x]^6 + (8153726976*x^3 - 566231040*x^5 + 14155776*x^7 - 147456*x^9 + 512*x^11)*Log[4]*Log[x]^7 + (-16307453952
*x^4 + 1698693120*x^6 - 70778880*x^8 + 1474560*x^10 - 15360*x^12 + 64*x^14)*Log[x]^9)/((-254803968*x + 2654208
0*x^3 - 1105920*x^5 + 23040*x^7 - 240*x^9 + x^11)*Log[x]^9),x]

[Out]

(16*(8*Log[4] + x*(-48 + x^2)*Log[x]^2)^4)/((-48 + x^2)^4*Log[x]^8)

________________________________________________________________________________________

fricas [B]  time = 0.58, size = 132, normalized size = 5.50 \begin {gather*} \frac {16 \, {\left ({\left (x^{12} - 192 \, x^{10} + 13824 \, x^{8} - 442368 \, x^{6} + 5308416 \, x^{4}\right )} \log \relax (x)^{8} + 64 \, {\left (x^{9} - 144 \, x^{7} + 6912 \, x^{5} - 110592 \, x^{3}\right )} \log \relax (2) \log \relax (x)^{6} + 1536 \, {\left (x^{6} - 96 \, x^{4} + 2304 \, x^{2}\right )} \log \relax (2)^{2} \log \relax (x)^{4} + 16384 \, {\left (x^{3} - 48 \, x\right )} \log \relax (2)^{3} \log \relax (x)^{2} + 65536 \, \log \relax (2)^{4}\right )}}{{\left (x^{8} - 192 \, x^{6} + 13824 \, x^{4} - 442368 \, x^{2} + 5308416\right )} \log \relax (x)^{8}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((64*x^14-15360*x^12+1474560*x^10-70778880*x^8+1698693120*x^6-16307453952*x^4)*log(x)^9+2*(512*x^11-
147456*x^9+14155776*x^7-566231040*x^5+8153726976*x^3)*log(2)*log(x)^7+2*(-1024*x^11+196608*x^9-14155776*x^7+45
2984832*x^5-5435817984*x^3)*log(2)*log(x)^6+4*(-12288*x^8+589824*x^6+28311552*x^4-1358954496*x^2)*log(2)^2*log
(x)^5+4*(-24576*x^8+3538944*x^6-169869312*x^4+2717908992*x^2)*log(2)^2*log(x)^4+8*(-163840*x^5+6291456*x^3+754
97472*x)*log(2)^3*log(x)^3+8*(-196608*x^5+18874368*x^3-452984832*x)*log(2)^3*log(x)^2-8388608*x^2*log(2)^4*log
(x)+16*(-524288*x^2+25165824)*log(2)^4)/(x^11-240*x^9+23040*x^7-1105920*x^5+26542080*x^3-254803968*x)/log(x)^9
,x, algorithm="fricas")

[Out]

16*((x^12 - 192*x^10 + 13824*x^8 - 442368*x^6 + 5308416*x^4)*log(x)^8 + 64*(x^9 - 144*x^7 + 6912*x^5 - 110592*
x^3)*log(2)*log(x)^6 + 1536*(x^6 - 96*x^4 + 2304*x^2)*log(2)^2*log(x)^4 + 16384*(x^3 - 48*x)*log(2)^3*log(x)^2
 + 65536*log(2)^4)/((x^8 - 192*x^6 + 13824*x^4 - 442368*x^2 + 5308416)*log(x)^8)

________________________________________________________________________________________

giac [B]  time = 0.38, size = 165, normalized size = 6.88 \begin {gather*} 16 \, x^{4} + \frac {1024 \, {\left (x^{9} \log \relax (2) \log \relax (x)^{6} - 144 \, x^{7} \log \relax (2) \log \relax (x)^{6} + 24 \, x^{6} \log \relax (2)^{2} \log \relax (x)^{4} + 6912 \, x^{5} \log \relax (2) \log \relax (x)^{6} - 2304 \, x^{4} \log \relax (2)^{2} \log \relax (x)^{4} - 110592 \, x^{3} \log \relax (2) \log \relax (x)^{6} + 256 \, x^{3} \log \relax (2)^{3} \log \relax (x)^{2} + 55296 \, x^{2} \log \relax (2)^{2} \log \relax (x)^{4} - 12288 \, x \log \relax (2)^{3} \log \relax (x)^{2} + 1024 \, \log \relax (2)^{4}\right )}}{x^{8} \log \relax (x)^{8} - 192 \, x^{6} \log \relax (x)^{8} + 13824 \, x^{4} \log \relax (x)^{8} - 442368 \, x^{2} \log \relax (x)^{8} + 5308416 \, \log \relax (x)^{8}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((64*x^14-15360*x^12+1474560*x^10-70778880*x^8+1698693120*x^6-16307453952*x^4)*log(x)^9+2*(512*x^11-
147456*x^9+14155776*x^7-566231040*x^5+8153726976*x^3)*log(2)*log(x)^7+2*(-1024*x^11+196608*x^9-14155776*x^7+45
2984832*x^5-5435817984*x^3)*log(2)*log(x)^6+4*(-12288*x^8+589824*x^6+28311552*x^4-1358954496*x^2)*log(2)^2*log
(x)^5+4*(-24576*x^8+3538944*x^6-169869312*x^4+2717908992*x^2)*log(2)^2*log(x)^4+8*(-163840*x^5+6291456*x^3+754
97472*x)*log(2)^3*log(x)^3+8*(-196608*x^5+18874368*x^3-452984832*x)*log(2)^3*log(x)^2-8388608*x^2*log(2)^4*log
(x)+16*(-524288*x^2+25165824)*log(2)^4)/(x^11-240*x^9+23040*x^7-1105920*x^5+26542080*x^3-254803968*x)/log(x)^9
,x, algorithm="giac")

[Out]

16*x^4 + 1024*(x^9*log(2)*log(x)^6 - 144*x^7*log(2)*log(x)^6 + 24*x^6*log(2)^2*log(x)^4 + 6912*x^5*log(2)*log(
x)^6 - 2304*x^4*log(2)^2*log(x)^4 - 110592*x^3*log(2)*log(x)^6 + 256*x^3*log(2)^3*log(x)^2 + 55296*x^2*log(2)^
2*log(x)^4 - 12288*x*log(2)^3*log(x)^2 + 1024*log(2)^4)/(x^8*log(x)^8 - 192*x^6*log(x)^8 + 13824*x^4*log(x)^8
- 442368*x^2*log(x)^8 + 5308416*log(x)^8)

________________________________________________________________________________________

maple [B]  time = 0.17, size = 138, normalized size = 5.75




method result size



risch \(16 x^{4}+\frac {1024 \left (x^{9} \ln \relax (x )^{6}-144 x^{7} \ln \relax (x )^{6}+24 \ln \relax (2) x^{6} \ln \relax (x )^{4}+6912 x^{5} \ln \relax (x )^{6}-2304 \ln \relax (2) x^{4} \ln \relax (x )^{4}-110592 x^{3} \ln \relax (x )^{6}+256 \ln \relax (2)^{2} x^{3} \ln \relax (x )^{2}+55296 \ln \relax (2) x^{2} \ln \relax (x )^{4}-12288 x \ln \relax (2)^{2} \ln \relax (x )^{2}+1024 \ln \relax (2)^{3}\right ) \ln \relax (2)}{\left (x^{2}-48\right ) \left (x^{6}-144 x^{4}+6912 x^{2}-110592\right ) \ln \relax (x )^{8}}\) \(138\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((64*x^14-15360*x^12+1474560*x^10-70778880*x^8+1698693120*x^6-16307453952*x^4)*ln(x)^9+2*(512*x^11-147456*
x^9+14155776*x^7-566231040*x^5+8153726976*x^3)*ln(2)*ln(x)^7+2*(-1024*x^11+196608*x^9-14155776*x^7+452984832*x
^5-5435817984*x^3)*ln(2)*ln(x)^6+4*(-12288*x^8+589824*x^6+28311552*x^4-1358954496*x^2)*ln(2)^2*ln(x)^5+4*(-245
76*x^8+3538944*x^6-169869312*x^4+2717908992*x^2)*ln(2)^2*ln(x)^4+8*(-163840*x^5+6291456*x^3+75497472*x)*ln(2)^
3*ln(x)^3+8*(-196608*x^5+18874368*x^3-452984832*x)*ln(2)^3*ln(x)^2-8388608*x^2*ln(2)^4*ln(x)+16*(-524288*x^2+2
5165824)*ln(2)^4)/(x^11-240*x^9+23040*x^7-1105920*x^5+26542080*x^3-254803968*x)/ln(x)^9,x,method=_RETURNVERBOS
E)

[Out]

16*x^4+1024*(x^9*ln(x)^6-144*x^7*ln(x)^6+24*ln(2)*x^6*ln(x)^4+6912*x^5*ln(x)^6-2304*ln(2)*x^4*ln(x)^4-110592*x
^3*ln(x)^6+256*ln(2)^2*x^3*ln(x)^2+55296*ln(2)*x^2*ln(x)^4-12288*x*ln(2)^2*ln(x)^2+1024*ln(2)^3)*ln(2)/(x^2-48
)/(x^6-144*x^4+6912*x^2-110592)/ln(x)^8

________________________________________________________________________________________

maxima [B]  time = 0.71, size = 153, normalized size = 6.38 \begin {gather*} \frac {16 \, {\left ({\left (x^{12} - 192 \, x^{10} + 13824 \, x^{8} - 442368 \, x^{6} + 5308416 \, x^{4}\right )} \log \relax (x)^{8} + 64 \, {\left (x^{9} \log \relax (2) - 144 \, x^{7} \log \relax (2) + 6912 \, x^{5} \log \relax (2) - 110592 \, x^{3} \log \relax (2)\right )} \log \relax (x)^{6} + 1536 \, {\left (x^{6} \log \relax (2)^{2} - 96 \, x^{4} \log \relax (2)^{2} + 2304 \, x^{2} \log \relax (2)^{2}\right )} \log \relax (x)^{4} + 65536 \, \log \relax (2)^{4} + 16384 \, {\left (x^{3} \log \relax (2)^{3} - 48 \, x \log \relax (2)^{3}\right )} \log \relax (x)^{2}\right )}}{{\left (x^{8} - 192 \, x^{6} + 13824 \, x^{4} - 442368 \, x^{2} + 5308416\right )} \log \relax (x)^{8}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((64*x^14-15360*x^12+1474560*x^10-70778880*x^8+1698693120*x^6-16307453952*x^4)*log(x)^9+2*(512*x^11-
147456*x^9+14155776*x^7-566231040*x^5+8153726976*x^3)*log(2)*log(x)^7+2*(-1024*x^11+196608*x^9-14155776*x^7+45
2984832*x^5-5435817984*x^3)*log(2)*log(x)^6+4*(-12288*x^8+589824*x^6+28311552*x^4-1358954496*x^2)*log(2)^2*log
(x)^5+4*(-24576*x^8+3538944*x^6-169869312*x^4+2717908992*x^2)*log(2)^2*log(x)^4+8*(-163840*x^5+6291456*x^3+754
97472*x)*log(2)^3*log(x)^3+8*(-196608*x^5+18874368*x^3-452984832*x)*log(2)^3*log(x)^2-8388608*x^2*log(2)^4*log
(x)+16*(-524288*x^2+25165824)*log(2)^4)/(x^11-240*x^9+23040*x^7-1105920*x^5+26542080*x^3-254803968*x)/log(x)^9
,x, algorithm="maxima")

[Out]

16*((x^12 - 192*x^10 + 13824*x^8 - 442368*x^6 + 5308416*x^4)*log(x)^8 + 64*(x^9*log(2) - 144*x^7*log(2) + 6912
*x^5*log(2) - 110592*x^3*log(2))*log(x)^6 + 1536*(x^6*log(2)^2 - 96*x^4*log(2)^2 + 2304*x^2*log(2)^2)*log(x)^4
 + 65536*log(2)^4 + 16384*(x^3*log(2)^3 - 48*x*log(2)^3)*log(x)^2)/((x^8 - 192*x^6 + 13824*x^4 - 442368*x^2 +
5308416)*log(x)^8)

________________________________________________________________________________________

mupad [B]  time = 7.76, size = 8404, normalized size = 350.17 result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(x)^9*(16307453952*x^4 - 1698693120*x^6 + 70778880*x^8 - 1474560*x^10 + 15360*x^12 - 64*x^14) + 16*log
(2)^4*(524288*x^2 - 25165824) - 8*log(2)^3*log(x)^3*(75497472*x + 6291456*x^3 - 163840*x^5) + 8*log(2)^3*log(x
)^2*(452984832*x - 18874368*x^3 + 196608*x^5) - 4*log(2)^2*log(x)^4*(2717908992*x^2 - 169869312*x^4 + 3538944*
x^6 - 24576*x^8) - 2*log(2)*log(x)^7*(8153726976*x^3 - 566231040*x^5 + 14155776*x^7 - 147456*x^9 + 512*x^11) +
 2*log(2)*log(x)^6*(5435817984*x^3 - 452984832*x^5 + 14155776*x^7 - 196608*x^9 + 1024*x^11) + 8388608*x^2*log(
2)^4*log(x) + 4*log(2)^2*log(x)^5*(1358954496*x^2 - 28311552*x^4 - 589824*x^6 + 12288*x^8))/(log(x)^9*(2548039
68*x - 26542080*x^3 + 1105920*x^5 - 23040*x^7 + 240*x^9 - x^11)),x)

[Out]

((256*x*(13045963161600*x^3*log(2)^4 - 2536135238615040*x^3*log(2)^2 - 1367869237493760*x^2*log(2)^3 - 1669475
59833600*x^4*log(2)^3 - 211344603217920*x^5*log(2)^2 + 3786953195520*x^5*log(2)^4 + 6816006144000*x^6*log(2)^3
 + 18712803409920*x^7*log(2)^2 + 244234321920*x^7*log(2)^4 + 100063641600*x^8*log(2)^3 - 573308928000*x^9*log(
2)^2 + 4234936320*x^9*log(2)^4 - 5019770880*x^10*log(2)^3 + 8121876480*x^11*log(2)^2 + 16777216*x^11*log(2)^4
+ 21957120*x^12*log(2)^3 - 39813120*x^13*log(2)^2 + 300000*x^14*log(2)^3 - 207360*x^15*log(2)^2 + 2160*x^17*lo
g(2)^2 + 60867245726760960*x*log(2)^2 - 60867245726760960*x^2*log(2) + 4174708211712*x*log(2)^4 + 114126085737
67680*x^4*log(2) - 951050714480640*x^6*log(2) + 46231631953920*x^8*log(2) - 1444738498560*x^10*log(2) + 300987
18720*x^12*log(2) - 418037760*x^14*log(2) + 3732480*x^16*log(2) - 19440*x^18*log(2) + 45*x^20*log(2) - 2817928
04290560*log(2)^3))/(315*(x^2 - 48)^10) - (64*x*log(x)^6*(8916100448256*x^2*log(2) + 2681047351296*x^4*log(2)
+ 125188374528*x^6*log(2) + 1162100736*x^8*log(2) + 1711872*x^10*log(2) - 288*x^12*log(2) + x^14*log(2)))/(63*
(x^2 - 48)^7) - (32*x*log(x)^4*(101758512660480*x^3*log(2)^2 + 21040692461568*x^5*log(2)^2 + 889209225216*x^7*
log(2)^2 + 9132244992*x^9*log(2)^2 + 19169280*x^11*log(2)^2 + 3328*x^13*log(2)^2 + 40703405064192*x*log(2)^2 -
 13076947324108800*x^2*log(2) + 77358484684800*x^4*log(2) + 23193531187200*x^6*log(2) - 462761164800*x^8*log(2
) - 1551052800*x^10*log(2) + 63993600*x^12*log(2) - 92400*x^14*log(2) + 275*x^16*log(2)))/(105*(x^2 - 48)^8) +
 (16*x*log(x)^5*(1546729392439296*x^3*log(2)^2 + 560063198527488*x^5*log(2)^2 + 42451020546048*x^7*log(2)^2 +
884396261376*x^9*log(2)^2 + 5064228864*x^11*log(2)^2 + 6070272*x^13*log(2)^2 + 512*x^15*log(2)^2 + 30057899124
3264*x*log(2)^2 - 636823558416236544*x^2*log(2) - 51212319769755648*x^4*log(2) + 2923233426800640*x^6*log(2) +
 2985792897024*x^8*log(2) - 1372437872640*x^10*log(2) + 10881589248*x^12*log(2) + 42425856*x^14*log(2) + 44640
*x^16*log(2) - 93*x^18*log(2)))/(105*(x^2 - 48)^9) - (256*x*log(x)^2*(17758817353728*x^2*log(2)^3 - 5401028748
90240*x^3*log(2)^2 + 12587825627136*x^4*log(2)^3 + 4403012567040*x^5*log(2)^2 + 1455879094272*x^6*log(2)^3 + 9
68255078400*x^7*log(2)^2 + 42365804544*x^8*log(2)^3 - 20171980800*x^9*log(2)^2 + 326126592*x^10*log(2)^3 - 398
13120*x^11*log(2)^2 + 500000*x^12*log(2)^3 + 2119680*x^13*log(2)^2 + 1920*x^15*log(2)^2 - 1127171217162240*x*l
og(2)^2 + 11412608573767680*x^2*log(2) - 1479412222525440*x^4*log(2) + 81455732490240*x^6*log(2) - 24766945689
60*x^8*log(2) + 45386956800*x^10*log(2) - 517570560*x^12*log(2) + 3732480*x^14*log(2) - 17280*x^16*log(2) + 45
*x^18*log(2) + 391378894848*log(2)^3))/(105*(x^2 - 48)^9) + (128*x*log(x)*(2579969674838016*x^3*log(2)^4 - 202
890819089203200*x^3*log(2)^2 - 121396340088373248*x^2*log(2)^3 - 37992714838474752*x^4*log(2)^3 + 338151365148
67200*x^5*log(2)^2 + 1299377930895360*x^5*log(2)^4 - 128421199872000*x^6*log(2)^3 - 1408964021452800*x^7*log(2
)^2 + 146803324354560*x^7*log(2)^4 + 79101343825920*x^8*log(2)^3 + 16878214840320*x^9*log(2)^2 + 4963581296640
*x^9*log(2)^4 - 929843380224*x^10*log(2)^3 + 351629475840*x^11*log(2)^2 + 52013039616*x^11*log(2)^4 - 18886017
024*x^12*log(2)^3 - 12740198400*x^13*log(2)^2 + 134217728*x^13*log(2)^4 + 221819904*x^14*log(2)^3 + 132710400*
x^15*log(2)^2 + 900000*x^16*log(2)^3 - 345600*x^17*log(2)^2 - 1440*x^19*log(2)^2 - 1947751863256350720*x*log(2
)^2 + 43824416923267891200*x^2*log(2) + 400771988324352*x*log(2)^4 - 8521414401746534400*x^4*log(2) + 74181955
7294899200*x^6*log(2) - 38042028579225600*x^8*log(2) + 1271369878732800*x^10*log(2) - 28894769971200*x^12*log(
2) + 451480780800*x^14*log(2) - 4777574400*x^16*log(2) + 32659200*x^18*log(2) - 129600*x^20*log(2) + 225*x^22*
log(2) - 8115632763568128*log(2)^3))/(315*(x^2 - 48)^11) + (64*x*log(x)^3*(2563923140149248*x^2*log(2)^3 - 620
845906412961792*x^3*log(2)^2 + 3287460410818560*x^4*log(2)^3 - 32096200408694784*x^5*log(2)^2 + 65281710882816
0*x^6*log(2)^3 + 2165695114641408*x^7*log(2)^2 + 34316697600000*x^8*log(2)^3 + 553487081472*x^10*log(2)^3 - 93
9971837952*x^11*log(2)^2 + 2594886144*x^12*log(2)^3 + 6046285824*x^13*log(2)^2 + 2500000*x^14*log(2)^3 + 50761
728*x^15*log(2)^2 + 19584*x^17*log(2)^2 - 551863027922632704*x*log(2)^2 + 35607338750155161600*x^2*log(2) - 39
83845770657792000*x^4*log(2) + 176296623184281600*x^6*log(2) - 3768244921958400*x^8*log(2) + 36271344844800*x^
10*log(2) - 113865523200*x^12*log(2) + 2156544000*x^14*log(2) - 62899200*x^16*log(2) + 514800*x^18*log(2) - 97
5*x^20*log(2) + 18786186952704*log(2)^3))/(315*(x^2 - 48)^10) + (8*x^3*log(2)*log(x)^7*(741528469241856*x^2 +
66192720003072*x^4 + 1378346139648*x^6 + 6714372096*x^8 + 4955904*x^10 + 432*x^12 - x^14 + 1283918464548864))/
(315*(x^2 - 48)^8))/log(x)^2 - ((2048*x*(8040480768*x^3*log(2)^4 - 2751882854400*x^3*log(2)^2 - 733835427840*x
^2*log(2)^3 - 12103188480*x^4*log(2)^3 + 103195607040*x^5*log(2)^2 + 1252786176*x^5*log(2)^4 + 2158755840*x^6*
log(2)^3 - 1194393600*x^7*log(2)^2 + 40353792*x^7*log(2)^4 - 35665920*x^8*log(2)^3 - 24883200*x^9*log(2)^2 + 2
62144*x^9*log(2)^4 - 184320*x^10*log(2)^3 + 933120*x^11*log(2)^2 + 5000*x^12*log(2)^3 - 10800*x^13*log(2)^2 +
45*x^15*log(2)^2 + 26418075402240*x*log(2)^2 + 5435817984*x*log(2)^4 - 489223618560*log(2)^3))/(105*(x^2 - 48)
^9) + (128*x*log(x)^5*(1956894474240*x^3*log(2)^2 + 404628701184*x^5*log(2)^2 + 17100177408*x^7*log(2)^2 + 175
620096*x^9*log(2)^2 + 368640*x^11*log(2)^2 + 64*x^13*log(2)^2 + 782757789696*x*log(2)^2 - 713288035860480*x^2*
log(2) + 4219553710080*x^4*log(2) + 1265101701120*x^6*log(2) - 25241518080*x^8*log(2) - 84602880*x^10*log(2) +
 3490560*x^12*log(2) - 5040*x^14*log(2) + 15*x^16*log(2)))/(105*(x^2 - 48)^8) - (64*x*log(x)^4*(406667132928*x
^3*log(2)^2 + 44887965696*x^5*log(2)^2 + 935165952*x^7*log(2)^2 + 3677184*x^9*log(2)^2 + 1344*x^11*log(2)^2 +
342456532992*x*log(2)^2 - 41278242816000*x^2*log(2) + 2038431744000*x^4*log(2) - 23224320000*x^6*log(2) - 1105
92000*x^8*log(2) - 288000*x^10*log(2) + 48000*x^12*log(2) - 125*x^14*log(2)))/(105*(x^2 - 48)^7) + (512*x*log(
x)*(1268067619307520*x^3*log(2)^2 + 6522981580800*x^3*log(2)^4 + 105672301608960*x^5*log(2)^2 + 1893476597760*
x^5*log(2)^4 - 9356401704960*x^7*log(2)^2 + 122117160960*x^7*log(2)^4 + 286654464000*x^9*log(2)^2 + 2117468160
*x^9*log(2)^4 - 4060938240*x^11*log(2)^2 + 8388608*x^11*log(2)^4 + 19906560*x^13*log(2)^2 + 103680*x^15*log(2)
^2 - 1080*x^17*log(2)^2 - 30433622863380480*x*log(2)^2 + 60867245726760960*x^2*log(2) + 2087354105856*x*log(2)
^4 - 11412608573767680*x^4*log(2) + 951050714480640*x^6*log(2) - 46231631953920*x^8*log(2) + 1444738498560*x^1
0*log(2) - 30098718720*x^12*log(2) + 418037760*x^14*log(2) - 3732480*x^16*log(2) + 19440*x^18*log(2) - 45*x^20
*log(2)))/(315*(x^2 - 48)^10) - (176*x*log(x)^6*(61917364224*x^2*log(2) + 8849129472*x^4*log(2) + 188227584*x^
6*log(2) + 511488*x^8*log(2) + 336*x^10*log(2) - x^12*log(2)))/(105*(x^2 - 48)^6) - (128*x*log(x)^2*(122475773
952*x^2*log(2)^3 - 652298158080*x^3*log(2)^2 + 45815169024*x^4*log(2)^3 + 32275169280*x^5*log(2)^2 + 283307212
8*x^6*log(2)^3 + 39046656*x^8*log(2)^3 - 14008320*x^9*log(2)^2 + 100000*x^10*log(2)^3 + 122880*x^11*log(2)^2 +
 320*x^13*log(2)^2 - 3913788948480*x*log(2)^2 - 26418075402240*x^2*log(2) + 3485718282240*x^4*log(2) - 1949250
35520*x^6*log(2) + 5971968000*x^8*log(2) - 107827200*x^10*log(2) + 1140480*x^12*log(2) - 6480*x^14*log(2) + 15
*x^16*log(2) + 8153726976*log(2)^3))/(35*(x^2 - 48)^8) + (128*x*log(x)^3*(17758817353728*x^2*log(2)^3 - 162030
8624670720*x^3*log(2)^2 + 12587825627136*x^4*log(2)^3 + 13209037701120*x^5*log(2)^2 + 1455879094272*x^6*log(2)
^3 + 2904765235200*x^7*log(2)^2 + 42365804544*x^8*log(2)^3 - 60515942400*x^9*log(2)^2 + 326126592*x^10*log(2)^
3 - 119439360*x^11*log(2)^2 + 500000*x^12*log(2)^3 + 6359040*x^13*log(2)^2 + 5760*x^15*log(2)^2 - 338151365148
6720*x*log(2)^2 + 57063042868838400*x^2*log(2) - 7397061112627200*x^4*log(2) + 407278662451200*x^6*log(2) - 12
383472844800*x^8*log(2) + 226934784000*x^10*log(2) - 2587852800*x^12*log(2) + 18662400*x^14*log(2) - 86400*x^1
6*log(2) + 225*x^18*log(2) + 391378894848*log(2)^3))/(315*(x^2 - 48)^9) + (16*x^3*log(2)*log(x)^7*(26810473512
96*x^2 + 125188374528*x^4 + 1162100736*x^6 + 1711872*x^8 - 288*x^10 + x^12 + 8916100448256))/(315*(x^2 - 48)^7
))/log(x)^3 - ((32768*x*(39936*x^3*log(2)^4 - 663552*x^2*log(2)^3 + 82944*x^4*log(2)^3 + 1024*x^5*log(2)^4 - 2
016*x^6*log(2)^3 + 15*x^8*log(2)^3 + 147456*x*log(2)^4 - 15925248*log(2)^3))/(21*(x^2 - 48)^7) + (128*x*log(x)
^5*(184025088*x^3*log(2)^2 + 9732096*x^5*log(2)^2 + 79872*x^7*log(2)^2 + 64*x^9*log(2)^2 + 339738624*x*log(2)^
2 - 34398535680*x^2*log(2) + 2309160960*x^4*log(2) - 56401920*x^6*log(2) + 622080*x^8*log(2) - 3600*x^10*log(2
) + 15*x^12*log(2)))/(35*(x^2 - 48)^6) + (1024*x*log(x)^3*(417595392*x^2*log(2)^3 - 382205952*x^3*log(2)^2 + 7
6308480*x^4*log(2)^3 + 63700992*x^5*log(2)^2 + 2171904*x^6*log(2)^3 - 1327104*x^7*log(2)^2 + 10000*x^8*log(2)^
3 + 3456*x^9*log(2)^2 + 72*x^11*log(2)^2 - 18345885696*x*log(2)^2 - 183458856960*x^2*log(2) + 22932357120*x^4*
log(2) - 1194393600*x^6*log(2) + 33177600*x^8*log(2) - 518400*x^10*log(2) + 4320*x^12*log(2) - 15*x^14*log(2)
+ 84934656*log(2)^3))/(105*(x^2 - 48)^7) - (1216*x*log(x)^6*(2985984*x^2*log(2) + 39168*x^4*log(2) + 240*x^6*l
og(2) - x^8*log(2)))/(105*(x^2 - 48)^4) + (16384*x*log(x)*(1815478272*x^2*log(2)^3 + 13759414272*x^3*log(2)^2
+ 18874368*x^3*log(2)^4 - 75644928*x^4*log(2)^3 - 716636160*x^5*log(2)^2 + 1388544*x^5*log(2)^4 - 414720*x^6*l
og(2)^3 + 19906560*x^7*log(2)^2 + 16384*x^7*log(2)^4 + 45792*x^8*log(2)^3 - 311040*x^9*log(2)^2 - 450*x^10*log
(2)^3 + 2592*x^11*log(2)^2 - 9*x^13*log(2)^2 - 110075314176*x*log(2)^2 + 28311552*x*log(2)^4 + 4586471424*log(
2)^3))/(105*(x^2 - 48)^8) - (128*x*log(x)^4*(8921088*x^3*log(2)^2 + 185856*x^5*log(2)^2 + 352*x^7*log(2)^2 + 3
8928384*x*log(2)^2 - 79626240*x^2*log(2) + 5529600*x^4*log(2) - 138240*x^6*log(2) + 1440*x^8*log(2) - 5*x^10*l
og(2)))/(35*(x^2 - 48)^5) - (4096*x*log(x)^2*(691200*x^2*log(2)^3 - 4644864*x^3*log(2)^2 + 53568*x^4*log(2)^3
+ 500*x^6*log(2)^3 + 2016*x^7*log(2)^2 - 21*x^9*log(2)^2 + 111476736*x*log(2)^2 + 442368*log(2)^3))/(35*(x^2 -
 48)^6) + (64*x^3*log(2)*log(x)^7*(24330240*x^2 + 198144*x^4 - 192*x^6 + x^8 + 429981696))/(105*(x^2 - 48)^5))
/log(x)^5 + 512*x*log(2) + (9876803001149030400*x^8*log(2)^4 + 137438953472*x^16*log(2)^4 - 891813888000*x^18*
log(2)^2 + 4954521600*x^20*log(2)^2 + 5160960*x^22*log(2)^2 - x^11*(51696580703928975360*log(2) - 213988759031
513088*log(2)^3) - x*(24125446694859589948538880*log(2) + 155127615064683577344*log(2)^3) + x^13*(107701209799
8520320*log(2) - 8766126230077440*log(2)^3) + x^14*(9040852470988800*log(2)^2 + 78121562800128*log(2)^4) + x^3
*(1507840418428724371783680*log(2) - 7029220057618474598400*log(2)^3) + x^5*(178008938286724405002240*log(2) -
 4549602085568923041792*log(2)^3) - x^7*(26832229668219487518720*log(2) + 274385335630361001984*log(2)^3) + x^
9*(1554305986878567874560*log(2) + 12840859747158589440*log(2)^3) - x^19*(303216721920*log(2) - 1792000000*log
(2)^3) - 1114767360*x^21*log(2) + 7741440*x^23*log(2) + x^2*(335075648539716527063040*log(2)^2 + 4924686192529
637376*log(2)^4) + x^4*(139614853558215219609600*log(2)^2 + 64431311018929422336*log(2)^4) - x^6*(109074104342
35564032000*log(2)^2 - 53844518175353339904*log(2)^4) + x^10*(20830124093158195200*log(2)^2 + 5680339921089331
20*log(2)^4) - x^12*(725898263852482560*log(2)^2 - 11458878256447488*log(2)^4) + x^17*(105305383895040*log(2)
+ 910789705728*log(2)^3) - x^15*(14054416113991680*log(2) + 4087282139136*log(2)^3))/(1349792041236651048960*x
^4 - 11780003268974409154560*x^2 - 93735558419211878400*x^6 + 4393854300900556800*x^8 - 146461810030018560*x^1
0 + 3559835660451840*x^12 - 63568493936640*x^14 + 827714764800*x^16 - 7664025600*x^18 + 47900160*x^20 - 181440
*x^22 + 315*x^24 + 47120013075897636618240) - ((128*x*(1420235733624422400*x^3*log(2)^2 - 283258126872870912*x
^2*log(2)^3 + 2579969674838016*x^3*log(2)^4 - 88649667956441088*x^4*log(2)^3 - 236705955604070400*x^5*log(2)^2
 + 1299377930895360*x^5*log(2)^4 - 299649466368000*x^6*log(2)^3 + 9862748150169600*x^7*log(2)^2 + 146803324354
560*x^7*log(2)^4 + 184569802260480*x^8*log(2)^3 - 118147503882240*x^9*log(2)^2 + 4963581296640*x^9*log(2)^4 -
2169634553856*x^10*log(2)^3 - 2461406330880*x^11*log(2)^2 + 52013039616*x^11*log(2)^4 - 44067373056*x^12*log(2
)^3 + 89181388800*x^13*log(2)^2 + 134217728*x^13*log(2)^4 + 517579776*x^14*log(2)^3 - 928972800*x^15*log(2)^2
+ 2100000*x^16*log(2)^3 + 2419200*x^17*log(2)^2 + 10080*x^19*log(2)^2 + 13634263042794455040*x*log(2)^2 - 6135
4183692575047680*x^2*log(2) + 400771988324352*x*log(2)^4 + 11929980162445148160*x^4*log(2) - 10385473802128588
80*x^6*log(2) + 53258840010915840*x^8*log(2) - 1779917830225920*x^10*log(2) + 40452677959680*x^12*log(2) - 632
073093120*x^14*log(2) + 6688604160*x^16*log(2) - 45722880*x^18*log(2) + 181440*x^20*log(2) - 315*x^22*log(2) -
 18936476448325632*log(2)^3))/(315*(x^2 - 48)^11) + (128*x*log(x)*(545370521711778201600*x^3*log(2)^2 - 411868
36275108249600*x^2*log(2)^3 + 503369617335386112*x^3*log(2)^4 - 26657824720130408448*x^4*log(2)^3 - 4260707200
8732672000*x^5*log(2)^2 + 420660298244947968*x^5*log(2)^4 - 1607726575959146496*x^6*log(2)^3 + 771625234464768
00*x^7*log(2)^4 + 75239412581007360*x^8*log(2)^3 + 81367672238899200*x^9*log(2)^2 + 4437765563351040*x^9*log(2
)^4 + 1253840384950272*x^10*log(2)^3 - 2835540093173760*x^11*log(2)^2 + 89522486378496*x^11*log(2)^4 - 5136402
0879360*x^12*log(2)^3 + 35315829964800*x^13*log(2)^2 + 610324709376*x^13*log(2)^4 - 23948918784*x^14*log(2)^3
+ 1073741824*x^15*log(2)^4 + 5336658432*x^16*log(2)^3 - 3483648000*x^17*log(2)^2 + 10500000*x^18*log(2)^3 + 19
353600*x^19*log(2)^2 + 20160*x^21*log(2)^2 + 1308889252108267683840*x*log(2)^2 - 8835002451730806865920*x^2*lo
g(2) + 38474110879137792*x*log(2)^4 + 1697465748827909652480*x^4*log(2) - 146142256989953064960*x^6*log(2) + 7
429608181522759680*x^8*log(2) - 247431694217379840*x^10*log(2) + 5663374914355200*x^12*log(2) - 91018525409280
*x^14*log(2) + 1033389342720*x^16*log(2) - 8256245760*x^18*log(2) + 45722880*x^20*log(2) - 166320*x^22*log(2)
+ 315*x^24*log(2) - 908950869519630336*log(2)^3))/(315*(x^2 - 48)^12) - (376*x*log(x)^6*(1283918464548864*x^2*
log(2) + 741528469241856*x^4*log(2) + 66192720003072*x^6*log(2) + 1378346139648*x^8*log(2) + 6714372096*x^10*l
og(2) + 4955904*x^12*log(2) + 432*x^14*log(2) - x^16*log(2)))/(315*(x^2 - 48)^8) + (64*x*log(x)^3*(36956186973
3593088*x^2*log(2)^3 - 194969961511960707072*x^3*log(2)^2 + 832577191978991616*x^4*log(2)^3 - 2895387248948989
1328*x^5*log(2)^2 + 268658454728540160*x^6*log(2)^3 + 577168021747924992*x^7*log(2)^2 + 23311435777966080*x^8*
log(2)^3 + 39237299724091392*x^9*log(2)^2 + 669724852617216*x^10*log(2)^3 - 817443744251904*x^11*log(2)^2 + 66
00592687104*x^12*log(2)^3 - 5218894872576*x^13*log(2)^2 + 19964203008*x^14*log(2)^3 + 113631952896*x^15*log(2)
^2 + 12500000*x^16*log(2)^3 + 332107776*x^17*log(2)^2 + 59136*x^19*log(2)^2 - 79987676517727469568*x*log(2)^2
+ 13804691330829385728000*x^2*log(2) - 944456762860240896000*x^4*log(2) - 1405441611399168000*x^6*log(2) + 178
7623102218240000*x^8*log(2) - 60036910940160000*x^10*log(2) + 687588507648000*x^12*log(2) + 2034450432000*x^14
*log(2) - 109154304000*x^16*log(2) + 756000000*x^18*log(2) - 1260000*x^20*log(2) + 2625*x^22*log(2) + 90173697
3729792*log(2)^3))/(315*(x^2 - 48)^11) - (64*x*log(x)^2*(12819615700746240*x^2*log(2)^3 - 1107783872227049472*
x^3*log(2)^2 + 16437302054092800*x^4*log(2)^3 - 57269690925318144*x^5*log(2)^2 + 3264085544140800*x^6*log(2)^3
 + 3864279518281728*x^7*log(2)^2 + 171583488000000*x^8*log(2)^3 + 2767435407360*x^10*log(2)^3 - 1677204652032*
x^11*log(2)^2 + 12974430720*x^12*log(2)^3 + 10788470784*x^13*log(2)^2 + 12500000*x^14*log(2)^3 + 90574848*x^15
*log(2)^2 + 34944*x^17*log(2)^2 - 984696775312932864*x*log(2)^2 + 42181001288645345280*x^2*log(2) - 4719324989
856153600*x^4*log(2) + 208843692079841280*x^6*log(2) - 4463920907550720*x^8*log(2) + 42967593123840*x^10*log(2
) - 134886850560*x^12*log(2) + 2554675200*x^14*log(2) - 74511360*x^16*log(2) + 609840*x^18*log(2) - 1155*x^20*
log(2) + 93930934763520*log(2)^3))/(105*(x^2 - 48)^10) - (16*x*log(x)^4*(47948611165618176*x^3*log(2)^2 + 1736
1959154352128*x^5*log(2)^2 + 1315981636927488*x^7*log(2)^2 + 27416284102656*x^9*log(2)^2 + 156991094784*x^11*l
og(2)^2 + 188178432*x^13*log(2)^2 + 15872*x^15*log(2)^2 + 9317948728541184*x*log(2)^2 - 6950278621424517120*x^
2*log(2) - 558930156626903040*x^4*log(2) + 31904106754867200*x^6*log(2) + 32586879467520*x^8*log(2) - 14978757
427200*x^10*log(2) + 118761431040*x^12*log(2) + 463034880*x^14*log(2) + 487200*x^16*log(2) - 1015*x^18*log(2))
)/(105*(x^2 - 48)^9) + (16*x*log(x)^5*(301781307208237056*x^3*log(2)^2 + 182952412670066688*x^5*log(2)^2 + 230
21950272012288*x^7*log(2)^2 + 849020410920960*x^9*log(2)^2 + 9992165916672*x^11*log(2)^2 + 34464595968*x^13*lo
g(2)^2 + 24674304*x^15*log(2)^2 + 1024*x^17*log(2)^2 + 28855583159353344*x*log(2)^2 - 131144567642879164416*x^
2*log(2) - 31238282216032174080*x^4*log(2) + 452552198870532096*x^6*log(2) + 47830561506459648*x^8*log(2) - 99
7893366349824*x^10*log(2) - 4028546285568*x^12*log(2) + 121494159360*x^14*log(2) + 234114048*x^16*log(2) - 574
56*x^18*log(2) + 133*x^20*log(2)))/(105*(x^2 - 48)^10) + (8*x^3*log(2)*log(x)^7*(194657772657180672*x^2 + 3039
7567082692608*x^4 + 1191180012355584*x^6 + 13193611444224*x^8 + 36664344576*x^10 + 15178752*x^12 - 384*x^14 +
x^16 + 184884258895036416))/(315*(x^2 - 48)^9))/log(x) - ((1048576*x^2*log(2)^4)/(x^2 - 48)^5 + (98304*x*log(x
)^2*(5*x^2*log(2)^3 + 48*log(2)^3))/(7*(x^2 - 48)^4) - (640*x*log(x)^6*(144*x^2*log(2) - x^4*log(2)))/(7*(x^2
- 48)^2) - (6144*x*log(x)^4*(x^3*log(2)^2 + 48*x*log(2)^2))/(7*(x^2 - 48)^3) + (131072*x*log(2)^3*log(x)*(768*
x*log(2) + 64*x^3*log(2) - 20736*x^2 + 432*x^4 - 3*x^6 + 331776))/(7*(x^2 - 48)^6) + (1536*x^2*log(2)*log(x)^5
*(110592*x + 18432*log(2) + 1536*x^2*log(2) + 8*x^4*log(2) - 6912*x^3 + 144*x^5 - x^7))/(7*(x^2 - 48)^4) + (16
384*x*log(2)^2*log(x)^3*(331776*x + 4608*log(2) + 2112*x^2*log(2) + 50*x^4*log(2) - 20736*x^3 + 432*x^5 - 3*x^
7))/(7*(x^2 - 48)^5) + (128*x^3*log(2)*log(x)^7*(x^4 - 96*x^2 + 20736))/(7*(x^2 - 48)^3))/log(x)^7 + ((4096*x*
(75497472*x^3*log(2)^4 - 13759414272*x^3*log(2)^2 - 4841275392*x^2*log(2)^3 + 201719808*x^4*log(2)^3 + 7166361
60*x^5*log(2)^2 + 5554176*x^5*log(2)^4 + 1105920*x^6*log(2)^3 - 19906560*x^7*log(2)^2 + 65536*x^7*log(2)^4 - 1
22112*x^8*log(2)^3 + 311040*x^9*log(2)^2 + 1200*x^10*log(2)^3 - 2592*x^11*log(2)^2 + 9*x^13*log(2)^2 + 1100753
14176*x*log(2)^2 + 113246208*x*log(2)^4 - 12230590464*log(2)^3))/(105*(x^2 - 48)^8) - (416*x*log(x)^6*(4299816
96*x^2*log(2) + 24330240*x^4*log(2) + 198144*x^6*log(2) - 192*x^8*log(2) + x^10*log(2)))/(105*(x^2 - 48)^5) +
(64*x*log(x)^5*(19365101568*x^3*log(2)^2 + 2137522176*x^5*log(2)^2 + 44531712*x^7*log(2)^2 + 175104*x^9*log(2)
^2 + 64*x^11*log(2)^2 + 16307453952*x*log(2)^2 - 5613841022976*x^2*log(2) + 277226717184*x^4*log(2) - 31585075
20*x^6*log(2) - 15040512*x^8*log(2) - 39168*x^10*log(2) + 6528*x^12*log(2) - 17*x^14*log(2)))/(35*(x^2 - 48)^7
) - (512*x*log(x)^4*(184025088*x^3*log(2)^2 + 9732096*x^5*log(2)^2 + 79872*x^7*log(2)^2 + 64*x^9*log(2)^2 + 33
9738624*x*log(2)^2 - 11466178560*x^2*log(2) + 769720320*x^4*log(2) - 18800640*x^6*log(2) + 207360*x^8*log(2) -
 1200*x^10*log(2) + 5*x^12*log(2)))/(35*(x^2 - 48)^6) + (2048*x*log(x)*(440301256704*x^2*log(2)^3 + 6054142279
680*x^3*log(2)^2 + 8040480768*x^3*log(2)^4 + 7261913088*x^4*log(2)^3 - 227030335488*x^5*log(2)^2 + 1252786176*
x^5*log(2)^4 - 1295253504*x^6*log(2)^3 + 2627665920*x^7*log(2)^2 + 40353792*x^7*log(2)^4 + 21399552*x^8*log(2)
^3 + 54743040*x^9*log(2)^2 + 262144*x^9*log(2)^4 + 110592*x^10*log(2)^3 - 2052864*x^11*log(2)^2 - 3000*x^12*lo
g(2)^3 + 23760*x^13*log(2)^2 - 99*x^15*log(2)^2 - 58119765884928*x*log(2)^2 + 5435817984*x*log(2)^4 + 29353417
1136*log(2)^3))/(105*(x^2 - 48)^9) + (128*x*log(x)^3*(122475773952*x^2*log(2)^3 - 2739652263936*x^3*log(2)^2 +
 45815169024*x^4*log(2)^3 + 135555710976*x^5*log(2)^2 + 2833072128*x^6*log(2)^3 + 39046656*x^8*log(2)^3 - 5883
4944*x^9*log(2)^2 + 100000*x^10*log(2)^3 + 516096*x^11*log(2)^2 + 1344*x^13*log(2)^2 - 16437913583616*x*log(2)
^2 - 26418075402240*x^2*log(2) + 3485718282240*x^4*log(2) - 194925035520*x^6*log(2) + 5971968000*x^8*log(2) -
107827200*x^10*log(2) + 1140480*x^12*log(2) - 6480*x^14*log(2) + 15*x^16*log(2) + 8153726976*log(2)^3))/(105*(
x^2 - 48)^8) - (256*x*log(x)^2*(835190784*x^2*log(2)^3 + 509607936*x^3*log(2)^2 + 152616960*x^4*log(2)^3 - 849
34656*x^5*log(2)^2 + 4343808*x^6*log(2)^3 + 1769472*x^7*log(2)^2 + 20000*x^8*log(2)^3 - 4608*x^9*log(2)^2 - 96
*x^11*log(2)^2 + 24461180928*x*log(2)^2 - 183458856960*x^2*log(2) + 22932357120*x^4*log(2) - 1194393600*x^6*lo
g(2) + 33177600*x^8*log(2) - 518400*x^10*log(2) + 4320*x^12*log(2) - 15*x^14*log(2) + 169869312*log(2)^3))/(35
*(x^2 - 48)^7) + (16*x^3*log(2)*log(x)^7*(8849129472*x^2 + 188227584*x^4 + 511488*x^6 + 336*x^8 - x^10 + 61917
364224))/(105*(x^2 - 48)^6))/log(x)^4 + ((65536*x*(6912*x^2*log(2)^3 + 128*x^3*log(2)^4 - 144*x^4*log(2)^3 + x
^6*log(2)^3 + 1536*x*log(2)^4 - 110592*log(2)^3))/(7*(x^2 - 48)^6) - (256*x*log(x)^4*(9216*x^3*log(2)^2 + 48*x
^5*log(2)^2 + 110592*x*log(2)^2 + 552960*x^2*log(2) - 34560*x^4*log(2) + 720*x^6*log(2) - 5*x^8*log(2)))/(7*(x
^2 - 48)^4) + (32768*x*log(x)*(1990656*x^2*log(2)^3 + 39936*x^3*log(2)^4 - 248832*x^4*log(2)^3 + 1024*x^5*log(
2)^4 + 6048*x^6*log(2)^3 - 45*x^8*log(2)^3 + 147456*x*log(2)^4 + 47775744*log(2)^3))/(21*(x^2 - 48)^7) + (2457
6*x^2*log(2)^2*log(x)^2)/(7*(x^2 - 48)^2) + (128*x*log(x)^5*(811008*x^3*log(2)^2 + 16896*x^5*log(2)^2 + 32*x^7
*log(2)^2 + 3538944*x*log(2)^2 - 47775744*x^2*log(2) + 3317760*x^4*log(2) - 82944*x^6*log(2) + 864*x^8*log(2)
- 3*x^10*log(2)))/(7*(x^2 - 48)^5) + (4096*x*log(x)^3*(691200*x^2*log(2)^3 - 1990656*x^3*log(2)^2 + 53568*x^4*
log(2)^3 + 500*x^6*log(2)^3 + 864*x^7*log(2)^2 - 9*x^9*log(2)^2 + 47775744*x*log(2)^2 + 442368*log(2)^3))/(21*
(x^2 - 48)^6) - (256*x*log(x)^6*(20736*x^2*log(2) - 96*x^4*log(2) + x^6*log(2)))/(7*(x^2 - 48)^3) + (64*x^3*lo
g(2)*log(x)^7*(39168*x^2 + 240*x^4 - x^6 + 2985984))/(21*(x^2 - 48)^4))/log(x)^6 + 16*x^4 + ((1048576*log(2)^4
)/(x^2 - 48)^4 + (196608*x*log(2)^3*log(x)^2)/(x^2 - 48)^3 + (256*x^3*log(2)*log(x)^6)/(x^2 - 48) + (1048576*x
^2*log(2)^4*log(x))/(x^2 - 48)^5 + (12288*x^2*log(2)^2*log(x)^4)/(x^2 - 48)^2 + (32768*x*log(2)^3*log(x)^3*(5*
x^2 + 48))/(x^2 - 48)^4 + (6144*x^2*log(2)^2*log(x)^5*(x^2 + 48))/(x^2 - 48)^3 - (128*x^3*log(2)*log(x)^7*(x^2
 - 144))/(x^2 - 48)^2)/log(x)^8 - (log(x)*((14494586911064064*x^8*log(2)^2)/5 - (4155203974946881536*x^4*log(2
)^2)/5 - (214813785741852672*x^6*log(2)^2)/5 - (3693514644397228032*x^2*log(2)^2)/5 - (6291053346816*x^12*log(
2)^2)/5 + (40466644992*x^14*log(2)^2)/5 + (339738624*x^16*log(2)^2)/5 + (131072*x^18*log(2)^2)/5 + x^7*(185156
658605850624*log(2) + (14855215987556352*log(2)^3)/7) + x^15*(2264924160*log(2) + (512000000*log(2)^3)/63) + x
^11*(38094212431872*log(2) + (62974530158592*log(2)^3)/35) - x^5*(4184059558106234880*log(2) - (74807988015071
232*log(2)^3)/7) + x^3*(37396835774521933824*log(2) + (291717477279203328*log(2)^3)/35) - x^13*(119587995648*l
og(2) - (885721137152*log(2)^3)/105) + (2137450604396544*x*log(2)^3)/35 - 66060288*x^17*log(2) + 540672*x^19*l
og(2) - 1024*x^21*log(2) - x^9*(3957623384702976*log(2) - (780895518720000*log(2)^3)/7)))/(1268067619307520*x^
4 - 13526054605946880*x^2 - 70448201072640*x^6 + 2568423997440*x^8 - 64210599936*x^10 + 1114767360*x^12 - 1327
1040*x^14 + 103680*x^16 - 480*x^18 + x^20 + 64925062108545024) - (log(x)^5*((54780521154084864*x^3*log(2))/35
+ (31638548020985856*x^5*log(2))/35 + (2824222720131072*x^7*log(2))/35 + (58809435291648*x^9*log(2))/35 + (286
479876096*x^11*log(2))/35 + (211451904*x^13*log(2))/35 + (18432*x^15*log(2))/35 - (128*x^17*log(2))/105))/(342
456532992*x^4 - 4696546738176*x^2 - 14269022208*x^6 + 371589120*x^8 - 6193152*x^10 + 64512*x^12 - 384*x^14 + x
^16 + 28179280429056) + (log(x)^2*((639632093365665792*x^8*log(2)^2)/5 - (216070606697237839872*x^4*log(2)^2)/
5 - (32087408473200918528*x^6*log(2)^2)/5 - (88644351465533472768*x^2*log(2)^2)/5 + (43483760733192192*x^10*lo
g(2)^2)/5 - (905911681941504*x^12*log(2)^2)/5 - (5783710334976*x^14*log(2)^2)/5 + (125929783296*x^16*log(2)^2)
/5 + (368050176*x^18*log(2)^2)/5 + (65536*x^20*log(2)^2)/5 + x^15*(496018391040*log(2) + (425902997504*log(2)^
3)/105) + x^9*(435839537302732800*log(2) + (33154041995329536*log(2)^3)/7) - x^7*(342660050017320960*log(2) -
(382092024502812672*log(2)^3)/7) + x^3*(3365715219706974044160*log(2) + (2627995518105550848*log(2)^3)/35) - x
^5*(230267553611639685120*log(2) - (5920548920739495936*log(2)^3)/35) + (6412351813189632*x*log(2)^3)/35 + 184
320000*x^19*log(2) - 307200*x^21*log(2) + 640*x^23*log(2) - x^11*(14637570667315200*log(2) - (4762487840833536
*log(2)^3)/35) - x^17*(26612858880*log(2) - (160000000*log(2)^3)/63) + x^13*(167640626626560*log(2) + (4693754
7997184*log(2)^3)/35)))/(714175683193995264*x^2 - 74393300332707840*x^4 + 4649581270794240*x^6 - 1937325529497
60*x^8 + 5650532794368*x^10 - 117719433216*x^12 + 1751777280*x^14 - 18247680*x^16 + 126720*x^18 - 528*x^20 + x
^22 - 3116402981210161152) + (log(x)^4*((153896443516551168*x^2*log(2)^2)/35 + (1609500305110597632*x^4*log(2)
^2)/35 + (975746200907022336*x^6*log(2)^2)/35 + (122783734784065536*x^8*log(2)^2)/35 + (905621771649024*x^10*l
og(2)^2)/7 + (53291551555584*x^12*log(2)^2)/35 + (183811178496*x^14*log(2)^2)/35 + (131596288*x^16*log(2)^2)/3
5 + (16384*x^18*log(2)^2)/105 - 21035720123168587776*x^3*log(2) - 5010651784025210880*x^5*log(2) + 72589826385
248256*x^7*log(2) + 7672070016073728*x^9*log(2) - 160063096356864*x^11*log(2) - 646182862848*x^13*log(2) + 194
87784960*x^15*log(2) + 37552128*x^17*log(2) - 9216*x^19*log(2) + (64*x^21*log(2))/3))/(1268067619307520*x^4 -
13526054605946880*x^2 - 70448201072640*x^6 + 2568423997440*x^8 - 64210599936*x^10 + 1114767360*x^12 - 13271040
*x^14 + 103680*x^16 - 480*x^18 + x^20 + 64925062108545024) - (log(x)^3*((51298814505517056*x^2*log(2)^2)/35 +
(263975149642973184*x^4*log(2)^2)/35 + (95584119215357952*x^6*log(2)^2)/35 + (7244974173192192*x^8*log(2)^2)/3
5 + (150936961941504*x^10*log(2)^2)/35 + (864295059456*x^12*log(2)^2)/35 + (1035993088*x^14*log(2)^2)/35 + (26
2144*x^16*log(2)^2)/105 - 1168651117953810432*x^3*log(2) - 93981031262060544*x^5*log(2) + 5364500052049920*x^7
*log(2) + 5479304527872*x^9*log(2) - 2518595665920*x^11*log(2) + 19969081344*x^13*log(2) + 77856768*x^15*log(2
) + 81920*x^17*log(2) - (512*x^19*log(2))/3))/(253613523861504*x^2 - 21134460321792*x^4 + 1027369598976*x^6 -
32105299968*x^8 + 668860416*x^10 - 9289728*x^12 + 82944*x^14 - 432*x^16 + x^18 - 1352605460594688) + (log(x)^6
*((164341563462254592*x^3*log(2))/35 + (24718447321546752*x^5*log(2))/5 + (27020059629060096*x^7*log(2))/35 +
(1058826677649408*x^9*log(2))/35 + (11727654617088*x^11*log(2))/35 + (32590528512*x^13*log(2))/35 + (13492224*
x^15*log(2))/35 - (1024*x^17*log(2))/105 + (8*x^19*log(2))/315))/(253613523861504*x^2 - 21134460321792*x^4 + 1
027369598976*x^6 - 32105299968*x^8 + 668860416*x^10 - 9289728*x^12 + 82944*x^14 - 432*x^16 + x^18 - 1352605460
594688)

________________________________________________________________________________________

sympy [B]  time = 0.67, size = 134, normalized size = 5.58 \begin {gather*} 16 x^{4} + \frac {\left (262144 x^{3} \log {\relax (2 )}^{3} - 12582912 x \log {\relax (2 )}^{3}\right ) \log {\relax (x )}^{2} + \left (24576 x^{6} \log {\relax (2 )}^{2} - 2359296 x^{4} \log {\relax (2 )}^{2} + 56623104 x^{2} \log {\relax (2 )}^{2}\right ) \log {\relax (x )}^{4} + \left (1024 x^{9} \log {\relax (2 )} - 147456 x^{7} \log {\relax (2 )} + 7077888 x^{5} \log {\relax (2 )} - 113246208 x^{3} \log {\relax (2 )}\right ) \log {\relax (x )}^{6} + 1048576 \log {\relax (2 )}^{4}}{\left (x^{8} - 192 x^{6} + 13824 x^{4} - 442368 x^{2} + 5308416\right ) \log {\relax (x )}^{8}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((64*x**14-15360*x**12+1474560*x**10-70778880*x**8+1698693120*x**6-16307453952*x**4)*ln(x)**9+2*(512
*x**11-147456*x**9+14155776*x**7-566231040*x**5+8153726976*x**3)*ln(2)*ln(x)**7+2*(-1024*x**11+196608*x**9-141
55776*x**7+452984832*x**5-5435817984*x**3)*ln(2)*ln(x)**6+4*(-12288*x**8+589824*x**6+28311552*x**4-1358954496*
x**2)*ln(2)**2*ln(x)**5+4*(-24576*x**8+3538944*x**6-169869312*x**4+2717908992*x**2)*ln(2)**2*ln(x)**4+8*(-1638
40*x**5+6291456*x**3+75497472*x)*ln(2)**3*ln(x)**3+8*(-196608*x**5+18874368*x**3-452984832*x)*ln(2)**3*ln(x)**
2-8388608*x**2*ln(2)**4*ln(x)+16*(-524288*x**2+25165824)*ln(2)**4)/(x**11-240*x**9+23040*x**7-1105920*x**5+265
42080*x**3-254803968*x)/ln(x)**9,x)

[Out]

16*x**4 + ((262144*x**3*log(2)**3 - 12582912*x*log(2)**3)*log(x)**2 + (24576*x**6*log(2)**2 - 2359296*x**4*log
(2)**2 + 56623104*x**2*log(2)**2)*log(x)**4 + (1024*x**9*log(2) - 147456*x**7*log(2) + 7077888*x**5*log(2) - 1
13246208*x**3*log(2))*log(x)**6 + 1048576*log(2)**4)/((x**8 - 192*x**6 + 13824*x**4 - 442368*x**2 + 5308416)*l
og(x)**8)

________________________________________________________________________________________