Optimal. Leaf size=25 \[ 3-\left (4 (6-x)+x+\frac {2 \left (e^2+x\right )}{e^2}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 32, normalized size of antiderivative = 1.28, number of steps used = 2, number of rules used = 1, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {12} \begin {gather*} -\frac {4 x^2}{e^4}+\frac {4 (13-3 x)^2}{3 e^2}-(26-3 x)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (e^4 (156-18 x)-8 x+e^2 (-104+24 x)\right ) \, dx}{e^4}\\ &=\frac {4 (13-3 x)^2}{3 e^2}-(26-3 x)^2-\frac {4 x^2}{e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 34, normalized size = 1.36 \begin {gather*} -\frac {2 \left (-2+3 e^2\right ) \left (-26 e^2 x-x^2+\frac {3 e^2 x^2}{2}\right )}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.61, size = 36, normalized size = 1.44 \begin {gather*} -{\left (4 \, x^{2} + 3 \, {\left (3 \, x^{2} - 52 \, x\right )} e^{4} - 4 \, {\left (3 \, x^{2} - 26 \, x\right )} e^{2}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 36, normalized size = 1.44 \begin {gather*} -{\left (4 \, x^{2} + 3 \, {\left (3 \, x^{2} - 52 \, x\right )} e^{4} - 4 \, {\left (3 \, x^{2} - 26 \, x\right )} e^{2}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 27, normalized size = 1.08
method | result | size |
gosper | \(-\left (-2+3 \,{\mathrm e}^{2}\right ) x \left (3 \,{\mathrm e}^{2} x -52 \,{\mathrm e}^{2}-2 x \right ) {\mathrm e}^{-4}\) | \(27\) |
risch | \(-9 x^{2}+156 x +12 x^{2} {\mathrm e}^{-2}-104 x \,{\mathrm e}^{-2}-4 \,{\mathrm e}^{-4} x^{2}\) | \(29\) |
norman | \(\left (\left (156 \,{\mathrm e}^{2}-104\right ) x -\left (9 \,{\mathrm e}^{4}-12 \,{\mathrm e}^{2}+4\right ) {\mathrm e}^{-2} x^{2}\right ) {\mathrm e}^{-2}\) | \(36\) |
default | \({\mathrm e}^{-4} \left ({\mathrm e}^{4} \left (-9 x^{2}+156 x \right )+{\mathrm e}^{2} \left (12 x^{2}-104 x \right )-4 x^{2}\right )\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 36, normalized size = 1.44 \begin {gather*} -{\left (4 \, x^{2} + 3 \, {\left (3 \, x^{2} - 52 \, x\right )} e^{4} - 4 \, {\left (3 \, x^{2} - 26 \, x\right )} e^{2}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 27, normalized size = 1.08 \begin {gather*} 52\,x\,{\mathrm {e}}^{-2}\,\left (3\,{\mathrm {e}}^2-2\right )-x^2\,{\mathrm {e}}^{-4}\,{\left (3\,{\mathrm {e}}^2-2\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 29, normalized size = 1.16 \begin {gather*} \frac {x^{2} \left (- 9 e^{4} - 4 + 12 e^{2}\right )}{e^{4}} + \frac {x \left (-104 + 156 e^{2}\right )}{e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________