Optimal. Leaf size=28 \[ -2 x+\frac {1}{2} \left (3+\frac {1}{4} x^2 \left (4 e^{2/x}+x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 25, normalized size of antiderivative = 0.89, number of steps used = 9, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {12, 2226, 2206, 2210, 2214} \begin {gather*} \frac {x^3}{8}+\frac {1}{2} e^{2/x} x^2-2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2206
Rule 2210
Rule 2214
Rule 2226
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \left (-16+3 x^2+e^{2/x} (-8+8 x)\right ) \, dx\\ &=-2 x+\frac {x^3}{8}+\frac {1}{8} \int e^{2/x} (-8+8 x) \, dx\\ &=-2 x+\frac {x^3}{8}+\frac {1}{8} \int \left (-8 e^{2/x}+8 e^{2/x} x\right ) \, dx\\ &=-2 x+\frac {x^3}{8}-\int e^{2/x} \, dx+\int e^{2/x} x \, dx\\ &=-2 x-e^{2/x} x+\frac {1}{2} e^{2/x} x^2+\frac {x^3}{8}-2 \int \frac {e^{2/x}}{x} \, dx+\int e^{2/x} \, dx\\ &=-2 x+\frac {1}{2} e^{2/x} x^2+\frac {x^3}{8}+2 \text {Ei}\left (\frac {2}{x}\right )+2 \int \frac {e^{2/x}}{x} \, dx\\ &=-2 x+\frac {1}{2} e^{2/x} x^2+\frac {x^3}{8}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 25, normalized size = 0.89 \begin {gather*} -2 x+\frac {1}{2} e^{2/x} x^2+\frac {x^3}{8} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.09, size = 20, normalized size = 0.71 \begin {gather*} \frac {1}{8} \, x^{3} + \frac {1}{2} \, x^{2} e^{\frac {2}{x}} - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 20, normalized size = 0.71 \begin {gather*} \frac {1}{8} \, x^{3} + \frac {1}{2} \, x^{2} e^{\frac {2}{x}} - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 21, normalized size = 0.75
method | result | size |
derivativedivides | \(\frac {x^{3}}{8}-2 x +\frac {x^{2} {\mathrm e}^{\frac {2}{x}}}{2}\) | \(21\) |
default | \(\frac {x^{3}}{8}-2 x +\frac {x^{2} {\mathrm e}^{\frac {2}{x}}}{2}\) | \(21\) |
norman | \(\frac {x^{3}}{8}-2 x +\frac {x^{2} {\mathrm e}^{\frac {2}{x}}}{2}\) | \(21\) |
risch | \(\frac {x^{3}}{8}-2 x +\frac {x^{2} {\mathrm e}^{\frac {2}{x}}}{2}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 20, normalized size = 0.71 \begin {gather*} \frac {1}{8} \, x^{3} + \frac {1}{2} \, x^{2} e^{\frac {2}{x}} - 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.92, size = 17, normalized size = 0.61 \begin {gather*} \frac {x\,\left (4\,x\,{\mathrm {e}}^{2/x}+x^2-16\right )}{8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 17, normalized size = 0.61 \begin {gather*} \frac {x^{3}}{8} + \frac {x^{2} e^{\frac {2}{x}}}{2} - 2 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________