Optimal. Leaf size=28 \[ 40-x-\frac {1}{4+2 x-\frac {e^x}{2 e^x+x}} \]
________________________________________________________________________________________
Rubi [F] time = 2.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-14 x-16 x^2-4 x^3+\frac {e^{2 x} \left (-2 e^x-x\right )}{\left (2 e^x+x\right )^2}+e^x \left (-28-32 x-8 x^2\right )+\frac {e^x \left (1+7 x+4 x^2+e^x (16+8 x)\right )}{2 e^x+x}}{16 x+16 x^2+4 x^3+\frac {e^{2 x}}{2 e^x+x}+\frac {e^x \left (e^x (-16-8 x)-8 x-4 x^2\right )}{2 e^x+x}+e^x \left (32+32 x+8 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x^2 \left (7+8 x+2 x^2\right )-e^{2 x} \left (41+56 x+16 x^2\right )-e^x \left (-1+49 x+60 x^2+16 x^3\right )}{\left (2 x (2+x)+e^x (7+4 x)\right )^2} \, dx\\ &=\int \left (\frac {-41-56 x-16 x^2}{(7+4 x)^2}-\frac {-7+11 x+4 x^2}{(7+4 x)^2 \left (7 e^x+4 x+4 e^x x+2 x^2\right )}+\frac {2 x \left (-14+11 x^2+4 x^3\right )}{(7+4 x)^2 \left (7 e^x+4 x+4 e^x x+2 x^2\right )^2}\right ) \, dx\\ &=2 \int \frac {x \left (-14+11 x^2+4 x^3\right )}{(7+4 x)^2 \left (7 e^x+4 x+4 e^x x+2 x^2\right )^2} \, dx+\int \frac {-41-56 x-16 x^2}{(7+4 x)^2} \, dx-\int \frac {-7+11 x+4 x^2}{(7+4 x)^2 \left (7 e^x+4 x+4 e^x x+2 x^2\right )} \, dx\\ &=2 \int \left (-\frac {7}{64 \left (7 e^x+4 x+4 e^x x+2 x^2\right )^2}-\frac {3 x}{16 \left (7 e^x+4 x+4 e^x x+2 x^2\right )^2}+\frac {x^2}{4 \left (7 e^x+4 x+4 e^x x+2 x^2\right )^2}+\frac {49}{16 (7+4 x)^2 \left (7 e^x+4 x+4 e^x x+2 x^2\right )^2}+\frac {21}{64 (7+4 x) \left (7 e^x+4 x+4 e^x x+2 x^2\right )^2}\right ) \, dx+\int \left (-1+\frac {8}{(7+4 x)^2}\right ) \, dx-\int \left (\frac {1}{4 \left (7 e^x+4 x+4 e^x x+2 x^2\right )}-\frac {14}{(7+4 x)^2 \left (7 e^x+4 x+4 e^x x+2 x^2\right )}-\frac {3}{4 (7+4 x) \left (7 e^x+4 x+4 e^x x+2 x^2\right )}\right ) \, dx\\ &=-x-\frac {2}{7+4 x}-\frac {7}{32} \int \frac {1}{\left (7 e^x+4 x+4 e^x x+2 x^2\right )^2} \, dx-\frac {1}{4} \int \frac {1}{7 e^x+4 x+4 e^x x+2 x^2} \, dx-\frac {3}{8} \int \frac {x}{\left (7 e^x+4 x+4 e^x x+2 x^2\right )^2} \, dx+\frac {1}{2} \int \frac {x^2}{\left (7 e^x+4 x+4 e^x x+2 x^2\right )^2} \, dx+\frac {21}{32} \int \frac {1}{(7+4 x) \left (7 e^x+4 x+4 e^x x+2 x^2\right )^2} \, dx+\frac {3}{4} \int \frac {1}{(7+4 x) \left (7 e^x+4 x+4 e^x x+2 x^2\right )} \, dx+\frac {49}{8} \int \frac {1}{(7+4 x)^2 \left (7 e^x+4 x+4 e^x x+2 x^2\right )^2} \, dx+14 \int \frac {1}{(7+4 x)^2 \left (7 e^x+4 x+4 e^x x+2 x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 40, normalized size = 1.43 \begin {gather*} -x-\frac {2}{7+4 x}+\frac {x}{(7+4 x) \left (2 x (2+x)+e^x (7+4 x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 46, normalized size = 1.64 \begin {gather*} -\frac {2 \, x^{3} + 4 \, x^{2} + {\left (4 \, x^{2} + 7 \, x + 2\right )} e^{x} + x}{2 \, x^{2} + {\left (4 \, x + 7\right )} e^{x} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.37, size = 50, normalized size = 1.79 \begin {gather*} -\frac {2 \, x^{3} + 4 \, x^{2} e^{x} + 4 \, x^{2} + 7 \, x e^{x} + x + 2 \, e^{x}}{2 \, x^{2} + 4 \, x e^{x} + 4 \, x + 7 \, e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 41, normalized size = 1.46
method | result | size |
risch | \(-x -\frac {1}{2 \left (x +\frac {7}{4}\right )}+\frac {x}{\left (4 x +7\right ) \left (2 x^{2}+4 \,{\mathrm e}^{x} x +4 x +7 \,{\mathrm e}^{x}\right )}\) | \(41\) |
norman | \(\frac {-\frac {52 x^{3}}{15}-\frac {4 \,{\mathrm e}^{2 x}}{15}+\frac {x^{2}}{15}-\frac {193 \,{\mathrm e}^{x} x^{2}}{15}-\frac {178 x \,{\mathrm e}^{2 x}}{15}-2 x^{4}-8 \,{\mathrm e}^{x} x^{3}-8 \,{\mathrm e}^{2 x} x^{2}}{\left (2 \,{\mathrm e}^{x}+x \right ) \left (2 x^{2}+4 \,{\mathrm e}^{x} x +4 x +7 \,{\mathrm e}^{x}\right )}\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 46, normalized size = 1.64 \begin {gather*} -\frac {2 \, x^{3} + 4 \, x^{2} + {\left (4 \, x^{2} + 7 \, x + 2\right )} e^{x} + x}{2 \, x^{2} + {\left (4 \, x + 7\right )} e^{x} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.14, size = 32, normalized size = 1.14 \begin {gather*} -x-\frac {x+2\,{\mathrm {e}}^x}{4\,x+7\,{\mathrm {e}}^x+4\,x\,{\mathrm {e}}^x+2\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 36, normalized size = 1.29 \begin {gather*} - x + \frac {x}{8 x^{3} + 30 x^{2} + 28 x + \left (16 x^{2} + 56 x + 49\right ) e^{x}} - \frac {2}{4 x + 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________