3.14.33 729+27x972x3+270x628x9+x12+e(812187x2+729x581x8+3x11)+(729891x3+171x69x9+e(2187x2+486x527x8))log(13(3e+x))+(243270x3+27x6+e(729x2+81x5))log2(13(3e+x))+(2781ex227x3)log3(13(3e+x))81e+27xdx

Optimal. Leaf size=27 x+14(3+x33log(e+x3))4

________________________________________________________________________________________

Rubi [B]  time = 2.66, antiderivative size = 1236, normalized size of antiderivative = 45.78, number of steps used = 87, number of rules used = 19, integrand size = 167, number of rulesintegrand size = 0.114, Rules used = {6742, 43, 1850, 2418, 2389, 2295, 2395, 2390, 12, 2301, 2296, 2401, 2305, 2304, 2398, 2411, 2334, 2302, 30}

result too large to display

Antiderivative was successfully verified.

[In]

Int[(729 + 27*x - 972*x^3 + 270*x^6 - 28*x^9 + x^12 + E*(81 - 2187*x^2 + 729*x^5 - 81*x^8 + 3*x^11) + (729 - 8
91*x^3 + 171*x^6 - 9*x^9 + E*(-2187*x^2 + 486*x^5 - 27*x^8))*Log[(3*E + x)/3] + (243 - 270*x^3 + 27*x^6 + E*(-
729*x^2 + 81*x^5))*Log[(3*E + x)/3]^2 + (27 - 81*E*x^2 - 27*x^3)*Log[(3*E + x)/3]^3)/(81*E + 27*x),x]

[Out]

x - 486*E^2*x - (52461*E^5*x)/20 - 6561*E^8*x - 6561*E^11*x + 243*E^2*(1 + 3*E^3)^3*x + (81*E^2*(2 + 3*E^3)*x)
/2 + 9*E^2*(11 + 3*E^3)*x + 54*E*x^2 + (14247*E^4*x^2)/40 + (2187*E^7*x^2)/2 + (2187*E^10*x^2)/2 - (81*E*(1 +
3*E^3)^3*x^2)/2 - (9*E*(2 + 3*E^3)*x^2)/4 - (3*E*(11 + 3*E^3)*x^2)/2 - 12*x^3 - (1583*E^3*x^3)/20 - 243*E^6*x^
3 - 243*E^9*x^3 + ((11 + 3*E^3)*x^3)/3 + 81*E^3*(1 + 3*E^3 + 3*E^6)*x^3 + (1583*E^2*x^4)/80 + (243*E^5*x^4)/4
+ (243*E^8*x^4)/4 - (81*E^2*(1 + 3*E^3 + 3*E^6)*x^4)/4 - (799*E*x^5)/150 - (81*E^4*x^5)/5 - (81*E^7*x^5)/5 + (
27*E*(1 + 3*E^3 + 3*E^6)*x^5)/5 + (161*x^6)/108 + (9*E^3*x^6)/2 + (9*E^6*x^6)/2 - (9*E^3*(1 + E^3)*x^6)/2 - (9
*E^2*x^7)/7 - (9*E^5*x^7)/7 + (9*E^2*(1 + E^3)*x^7)/7 + (3*E*x^8)/8 + (3*E^4*x^8)/8 - (3*E*(1 + E^3)*x^8)/8 -
x^9/9 + x^12/324 + (27*E*(3*E + x)^2)/2 + (405*E^4*(3*E + x)^2)/4 - (2*(3*E + x)^3)/3 - 20*E^3*(3*E + x)^3 + (
45*E^2*(3*E + x)^4)/16 - (6*E*(3*E + x)^5)/25 + (3*E + x)^6/108 + (9*E*(2 + 3*E^3)*x^2*Log[E + x/3])/2 - (11 +
 3*E^3)*x^3*Log[E + x/3] + (3*E^2*x^4*Log[E + x/3])/4 - (E*x^5*Log[E + x/3])/5 + (19*x^6*Log[E + x/3])/18 - (x
^9*Log[E + x/3])/27 - 18*E^2*(3*E + x)*Log[E + x/3] - 27*E^2*(2 + 3*E^3)*(3*E + x)*Log[E + x/3] + 3*E*(3*E + x
)^2*Log[E + x/3] - (2*(3*E + x)^3*Log[E + x/3])/9 + 90*E^3*Log[E + x/3]^2 + (243*E^6*Log[E + x/3]^2)/2 + (27*(
1 + 3*E^3)^2*Log[E + x/3]^2)/2 - (10*x^3*Log[E + x/3]^2)/3 + (x^6*Log[E + x/3]^2)/6 + 9*E^2*(3*E + x)*Log[E +
x/3]^2 - 3*E*(3*E + x)^2*Log[E + x/3]^2 + ((3*E + x)^3*Log[E + x/3]^2)/3 + 3*(1 + 3*E^3)*Log[E + x/3]^3 - 9*E^
2*(3*E + x)*Log[E + x/3]^3 + 3*E*(3*E + x)^2*Log[E + x/3]^3 - ((3*E + x)^3*Log[E + x/3]^3)/3 + Log[E + x/3]^4/
4 + (10*Log[E + x/3]*(162*E^2*(3*E + x) - 27*E*(3*E + x)^2 + 2*(3*E + x)^3 - 162*E^3*Log[E + x/3]))/9 + (Log[E
 + x/3]*(87480*E^5*(3*E + x) - 36450*E^4*(3*E + x)^2 + 10800*E^3*(3*E + x)^3 - 2025*E^2*(3*E + x)^4 + 216*E*(3
*E + x)^5 - 10*(3*E + x)^6 - 43740*E^6*Log[E + x/3]))/180 + 27*Log[3*E + x] - 3*E*Log[3*E + x] + 972*E^3*Log[3
*E + x] + (128223*E^6*Log[3*E + x])/20 + 19683*E^9*Log[3*E + x] + 19683*E^12*Log[3*E + x] - (81*E^3*(2 + 3*E^3
)*Log[3*E + x])/2 - 27*E^3*(11 + 3*E^3)*Log[3*E + x] + 3*E*(1 - 243*E^2 - 2187*E^5 - 6561*E^8 - 6561*E^11)*Log
[3*E + x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 1850

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^n)^p, x], x] /; FreeQ[
{a, b, n}, x] && PolyQ[Pq, x] && (IGtQ[p, 0] || EqQ[n, 1])

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2296

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]

Rule 2301

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]

Rule 2302

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2305

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]

Rule 2334

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = I
ntHide[x^m*(d + e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]
] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] &&  !(EqQ[q, 1] && EqQ[m, -1])

Rule 2389

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rule 2390

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[((f*x)/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
 && EqQ[e*f - d*g, 0]

Rule 2395

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((f + g
*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n]))/(g*(q + 1)), x] - Dist[(b*e*n)/(g*(q + 1)), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 2398

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((
f + g*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n])^p)/(g*(q + 1)), x] - Dist[(b*e*n*p)/(g*(q + 1)), Int[((f + g*x)^(q
 + 1)*(a + b*Log[c*(d + e*x)^n])^(p - 1))/(d + e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*
f - d*g, 0] && GtQ[p, 0] && NeQ[q, -1] && IntegersQ[2*p, 2*q] && ( !IGtQ[q, 0] || (EqQ[p, 2] && NeQ[q, 1]))

Rule 2401

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Int[Exp
andIntegrand[(f + g*x)^q*(a + b*Log[c*(d + e*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && NeQ[
e*f - d*g, 0] && IGtQ[q, 0]

Rule 2411

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + (g_.)*(x_))^(q_.)*((h_.) + (i_.)*(x_))
^(r_.), x_Symbol] :> Dist[1/e, Subst[Int[((g*x)/e)^q*((e*h - d*i)/e + (i*x)/e)^r*(a + b*Log[c*x^n])^p, x], x,
d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n, p, q, r}, x] && EqQ[e*f - d*g, 0] && (IGtQ[p, 0] || IGtQ[
r, 0]) && IntegerQ[2*r]

Rule 2418

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[
(a + b*Log[c*(d + e*x)^n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n}, x] && RationalFunct
ionQ[RFx, x] && IntegerQ[p]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(273e+x+x3e+x36x33e+x+10x63e+x28x927(3e+x)+x1227(3e+x)+e(27729x2+243x527x8+x11)9(3e+x)(9+x3)2(1+3ex2+x3)log(e+x3)3(3e+x)+(9+x3)(1+3ex2+x3)log2(e+x3)3e+x(1+3ex2+x3)log3(e+x3)3e+x)dx=27log(3e+x)+127x123e+xdx13(9+x3)2(1+3ex2+x3)log(e+x3)3e+xdx2827x93e+xdx+10x63e+xdx36x33e+xdx+19e27729x2+243x527x8+x113e+xdx+x3e+xdx+(9+x3)(1+3ex2+x3)log2(e+x3)3e+xdx(1+3ex2+x3)log3(e+x3)3e+xdx=27log(3e+x)+127(177147e11+59049e10x19683e9x2+6561e8x32187e7x4+729e6x5243e5x6+81e4x727e3x8+9e2x93ex10+x11+531441e123e+x)dx13(81e2(2+3e3)log(e+x3)27e(2+3e3)xlog(e+x3)+9(11+3e3)x2log(e+x3)9e2x3log(e+x3)+3ex4log(e+x3)19x5log(e+x3)+x8log(e+x3)81(1+3e3)2log(e+x3)3e+x)dx2827(6561e82187e7x+729e6x2243e5x3+81e4x427e3x5+9e2x63ex7+x819683e93e+x)dx+10(243e5+81e4x27e3x2+9e2x33ex4+x5+729e63e+x)dx36(9e23ex+x227e33e+x)dx+19e(2187e(1+3e3)3729(1+3e3)3x+2187e2(1+3e3+3e6)x2729e(1+3e3+3e6)x3+243(1+3e3+3e6)x4243e2(1+e3)x5+81e(1+e3)x627(1+e3)x7+9e2x83ex9+x1027(1+243e2+2187e5+6561e8+6561e11)3e+x)dx+(13e3e+x)dx+(9e2log2(e+x3)+3exlog2(e+x3)10x2log2(e+x3)+x5log2(e+x3)+9(1+3e3)log2(e+x3)3e+x)dx(log3(e+x3)3ex+x2log3(e+x3))dx=x324e2x2430e5x6804e8x6561e11x+243e2(1+3e3)3x+54ex2+405e4x2+1134e7x2+2187e10x22812e(1+3e3)3x212x390e3x3252e6x3243e9x3+81e3(1+3e3+3e6)x3+45e2x42+63e5x4+243e8x44814e2(1+3e3+3e6)x46ex584e4x5581e7x55+275e(1+3e3+3e6)x5+5x63+14e3x63+9e6x6292e3(1+e3)x64e2x739e5x77+97e2(1+e3)x7+7ex818+3e4x8838e(1+e3)x828x9243+x12324+27log(3e+x)3elog(3e+x)+972e3log(3e+x)+7290e6log(3e+x)+20412e9log(3e+x)+19683e12log(3e+x)+3e(1243e22187e56561e86561e11)log(3e+x)13x8log(e+x3)dx+193x5log(e+x3)dx10x2log2(e+x3)dxex4log(e+x3)dx+(3e)xlog2(e+x3)dx+(3e2)x3log(e+x3)dx(9e2)log2(e+x3)dx+(9(1+3e3))log2(e+x3)3e+xdx+(27(1+3e3)2)log(e+x3)3e+xdx+(9e(2+3e3))xlog(e+x3)dx(27e2(2+3e3))log(e+x3)dx(3(11+3e3))x2log(e+x3)dx+x5log2(e+x3)dxlog3(e+x3)3exdxx2log3(e+x3)dx=Rest of rules removed due to large latex content

________________________________________________________________________________________

Mathematica [B]  time = 0.10, size = 115, normalized size = 4.26 127(27x243x3+81x623x9+x1212x3(24327x3+x6)log(e+x3)+92(9+x3)2log2(e+x3)9(9+x3)log3(e+x3)+274log4(e+x3)+729log(3e+x))

Antiderivative was successfully verified.

[In]

Integrate[(729 + 27*x - 972*x^3 + 270*x^6 - 28*x^9 + x^12 + E*(81 - 2187*x^2 + 729*x^5 - 81*x^8 + 3*x^11) + (7
29 - 891*x^3 + 171*x^6 - 9*x^9 + E*(-2187*x^2 + 486*x^5 - 27*x^8))*Log[(3*E + x)/3] + (243 - 270*x^3 + 27*x^6
+ E*(-729*x^2 + 81*x^5))*Log[(3*E + x)/3]^2 + (27 - 81*E*x^2 - 27*x^3)*Log[(3*E + x)/3]^3)/(81*E + 27*x),x]

[Out]

(27*x - 243*x^3 + (81*x^6)/2 - 3*x^9 + x^12/12 - x^3*(243 - 27*x^3 + x^6)*Log[E + x/3] + (9*(-9 + x^3)^2*Log[E
 + x/3]^2)/2 - 9*(-9 + x^3)*Log[E + x/3]^3 + (27*Log[E + x/3]^4)/4 + 729*Log[3*E + x])/27

________________________________________________________________________________________

fricas [B]  time = 0.93, size = 94, normalized size = 3.48 1324x1219x9+32x613(x39)log(13x+e)3+14log(13x+e)49x3+16(x618x3+81)log(13x+e)2127(x927x6+243x3729)log(13x+e)+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-81*x^2*exp(1)-27*x^3+27)*log(exp(1)+1/3*x)^3+((81*x^5-729*x^2)*exp(1)+27*x^6-270*x^3+243)*log(exp
(1)+1/3*x)^2+((-27*x^8+486*x^5-2187*x^2)*exp(1)-9*x^9+171*x^6-891*x^3+729)*log(exp(1)+1/3*x)+(3*x^11-81*x^8+72
9*x^5-2187*x^2+81)*exp(1)+x^12-28*x^9+270*x^6-972*x^3+27*x+729)/(81*exp(1)+27*x),x, algorithm="fricas")

[Out]

1/324*x^12 - 1/9*x^9 + 3/2*x^6 - 1/3*(x^3 - 9)*log(1/3*x + e)^3 + 1/4*log(1/3*x + e)^4 - 9*x^3 + 1/6*(x^6 - 18
*x^3 + 81)*log(1/3*x + e)^2 - 1/27*(x^9 - 27*x^6 + 243*x^3 - 729)*log(1/3*x + e) + x

________________________________________________________________________________________

giac [B]  time = 0.76, size = 141, normalized size = 5.22 1324x12127x9log(13x+e)19x9+16x6log(13x+e)2+x6log(13x+e)+32x613x3log(13x+e)33x3log(13x+e)29x3log(13x+e)+14log(13x+e)49x3+3log(13x+e)3+272log(13x+e)2+x+27log(x+3e)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-81*x^2*exp(1)-27*x^3+27)*log(exp(1)+1/3*x)^3+((81*x^5-729*x^2)*exp(1)+27*x^6-270*x^3+243)*log(exp
(1)+1/3*x)^2+((-27*x^8+486*x^5-2187*x^2)*exp(1)-9*x^9+171*x^6-891*x^3+729)*log(exp(1)+1/3*x)+(3*x^11-81*x^8+72
9*x^5-2187*x^2+81)*exp(1)+x^12-28*x^9+270*x^6-972*x^3+27*x+729)/(81*exp(1)+27*x),x, algorithm="giac")

[Out]

1/324*x^12 - 1/27*x^9*log(1/3*x + e) - 1/9*x^9 + 1/6*x^6*log(1/3*x + e)^2 + x^6*log(1/3*x + e) + 3/2*x^6 - 1/3
*x^3*log(1/3*x + e)^3 - 3*x^3*log(1/3*x + e)^2 - 9*x^3*log(1/3*x + e) + 1/4*log(1/3*x + e)^4 - 9*x^3 + 3*log(1
/3*x + e)^3 + 27/2*log(1/3*x + e)^2 + x + 27*log(x + 3*e)

________________________________________________________________________________________

maple [B]  time = 0.27, size = 104, normalized size = 3.85




method result size



risch ln(e+x3)44+(x33+3)ln(e+x3)3+(16x63x3+272)ln(e+x3)2+(127x9+x69x3)ln(e+x3)+x12324x99+3x629x3+x+27ln(3e+x) 104
derivativedivides Expression too large to display 1598
default Expression too large to display 1598



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-81*x^2*exp(1)-27*x^3+27)*ln(exp(1)+1/3*x)^3+((81*x^5-729*x^2)*exp(1)+27*x^6-270*x^3+243)*ln(exp(1)+1/3*
x)^2+((-27*x^8+486*x^5-2187*x^2)*exp(1)-9*x^9+171*x^6-891*x^3+729)*ln(exp(1)+1/3*x)+(3*x^11-81*x^8+729*x^5-218
7*x^2+81)*exp(1)+x^12-28*x^9+270*x^6-972*x^3+27*x+729)/(81*exp(1)+27*x),x,method=_RETURNVERBOSE)

[Out]

1/4*ln(exp(1)+1/3*x)^4+(-1/3*x^3+3)*ln(exp(1)+1/3*x)^3+(1/6*x^6-3*x^3+27/2)*ln(exp(1)+1/3*x)^2+(-1/27*x^9+x^6-
9*x^3)*ln(exp(1)+1/3*x)+1/324*x^12-1/9*x^9+3/2*x^6-9*x^3+x+27*ln(3*exp(1)+x)

________________________________________________________________________________________

maxima [B]  time = 0.94, size = 1976, normalized size = 73.19 result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-81*x^2*exp(1)-27*x^3+27)*log(exp(1)+1/3*x)^3+((81*x^5-729*x^2)*exp(1)+27*x^6-270*x^3+243)*log(exp
(1)+1/3*x)^2+((-27*x^8+486*x^5-2187*x^2)*exp(1)-9*x^9+171*x^6-891*x^3+729)*log(exp(1)+1/3*x)+(3*x^11-81*x^8+72
9*x^5-2187*x^2+81)*exp(1)+x^12-28*x^9+270*x^6-972*x^3+27*x+729)/(81*exp(1)+27*x),x, algorithm="maxima")

[Out]

1/324*x^12 - 1/99*x^11*e + 1/30*x^10*e^2 - 1/9*x^9*e^3 - 1/9*x^9 + 3/8*x^8*e^4 + 23/64*x^8*e - 9/7*x^7*e^5 - 4
59/392*x^7*e^2 + 1/108*(18*log(1/3*x + e)^2 - 6*log(1/3*x + e) + 1)*(x + 3*e)^6 + 9/2*x^6*e^6 + 431/112*x^6*e^
3 - 18/125*(25*e*log(1/3*x + e)^2 - 10*e*log(1/3*x + e) + 2*e)*(x + 3*e)^5 + 161/108*x^6 - 81/5*x^5*e^7 - 1788
3/1400*x^5*e^4 - 691/150*x^5*e + 135/32*(8*e^2*log(1/3*x + e)^2 - 4*e^2*log(1/3*x + e) + e^2)*(x + 3*e)^4 + 24
3/4*x^4*e^8 + 47979/1120*x^4*e^5 + 1097/80*x^4*e^2 + 27/4*e^3*log(1/3*x + e)^4 - 20*(9*e^3*log(1/3*x + e)^2 -
6*e^3*log(1/3*x + e) + 2*e^3)*(x + 3*e)^3 - 1/27*(9*log(1/3*x + e)^3 - 9*log(1/3*x + e)^2 + 6*log(1/3*x + e) -
 2)*(x + 3*e)^3 - 10/27*(9*log(1/3*x + e)^2 - 6*log(1/3*x + e) + 2)*(x + 3*e)^3 - 243*x^3*e^9 - 40419/280*x^3*
e^6 - 717/20*x^3*e^3 + 243*e^6*log(1/3*x + e)^3 + 90*e^3*log(1/3*x + e)^3 + 1/4*log(1/3*x + e)^4 + 9/8*(4*e*lo
g(1/3*x + e)^3 - 6*e*log(1/3*x + e)^2 + 6*e*log(1/3*x + e) - 3*e)*(x + 3*e)^2 + 1215/4*(2*e^4*log(1/3*x + e)^2
 - 2*e^4*log(1/3*x + e) + e^4)*(x + 3*e)^2 + 45/2*(2*e*log(1/3*x + e)^2 - 2*e*log(1/3*x + e) + e)*(x + 3*e)^2
- 25/3*x^3 + 2187/2*x^2*e^10 + 261711/560*x^2*e^7 + 1323/40*x^2*e^4 + 51/4*x^2*e - 6561/2*e^9*log(x + 3*e)^2 -
 4617/2*e^6*log(x + 3*e)^2 - 891/2*e^3*log(x + 3*e)^2 - 1/280*(35*x^8 - 120*x^7*e + 420*x^6*e^2 - 1512*x^5*e^3
 + 5670*x^4*e^4 - 22680*x^3*e^5 + 102060*x^2*e^6 - 612360*x*e^7 + 1837080*e^8*log(x + 3*e))*e*log(1/3*x + e) +
 9/10*(4*x^5 - 15*x^4*e + 60*x^3*e^2 - 270*x^2*e^3 + 1620*x*e^4 - 4860*e^5*log(x + 3*e))*e*log(1/3*x + e) - 81
/2*(x^2 - 6*x*e + 18*e^2*log(x + 3*e))*e*log(1/3*x + e) + 3*log(1/3*x + e)^3 - 27*(e^2*log(1/3*x + e)^3 - 3*e^
2*log(1/3*x + e)^2 + 6*e^2*log(1/3*x + e) - 6*e^2)*(x + 3*e) - 1458*(e^5*log(1/3*x + e)^2 - 2*e^5*log(1/3*x +
e) + 2*e^5)*(x + 3*e) - 270*(e^2*log(1/3*x + e)^2 - 2*e^2*log(1/3*x + e) + 2*e^2)*(x + 3*e) - 6561*x*e^11 - 17
2773/280*x*e^8 + 26811/20*x*e^5 + 441/2*x*e^2 + 1/27720*(280*x^11 - 924*x^10*e + 3080*x^9*e^2 - 10395*x^8*e^3
+ 35640*x^7*e^4 - 124740*x^6*e^5 + 449064*x^5*e^6 - 1683990*x^4*e^7 + 6735960*x^3*e^8 - 30311820*x^2*e^9 + 181
870920*x*e^10 - 545612760*e^11*log(x + 3*e))*e + 1/78400*(1225*x^8 - 9000*x^7*e + 51100*x^6*e^2 - 268632*x^5*e
^3 + 1404270*x^4*e^4 - 7733880*x^3*e^5 + 49090860*x^2*e^6 + 257191200*e^8*log(x + 3*e)^2 - 466005960*x*e^7 + 1
398017880*e^8*log(x + 3*e))*e - 3/280*(35*x^8 - 120*x^7*e + 420*x^6*e^2 - 1512*x^5*e^3 + 5670*x^4*e^4 - 22680*
x^3*e^5 + 102060*x^2*e^6 - 612360*x*e^7 + 1837080*e^8*log(x + 3*e))*e + 1/4000*(96*(25*log(1/3*x + e)^2 - 10*l
og(1/3*x + e) + 2)*(x + 3*e)^5 - 5625*(8*e*log(1/3*x + e)^2 - 4*e*log(1/3*x + e) + e)*(x + 3*e)^4 + 40000*(9*e
^2*log(1/3*x + e)^2 - 6*e^2*log(1/3*x + e) + 2*e^2)*(x + 3*e)^3 - 972000*e^5*log(1/3*x + e)^3 - 810000*(2*e^3*
log(1/3*x + e)^2 - 2*e^3*log(1/3*x + e) + e^3)*(x + 3*e)^2 + 4860000*(e^4*log(1/3*x + e)^2 - 2*e^4*log(1/3*x +
 e) + 2*e^4)*(x + 3*e))*e - 9/200*(16*x^5 - 135*x^4*e + 940*x^3*e^2 - 6930*x^2*e^3 - 48600*e^5*log(x + 3*e)^2
+ 73980*x*e^4 - 221940*e^5*log(x + 3*e))*e + 27/20*(4*x^5 - 15*x^4*e + 60*x^3*e^2 - 270*x^2*e^3 + 1620*x*e^4 -
 4860*e^5*log(x + 3*e))*e - 3/8*(18*e^2*log(1/3*x + e)^4 + (4*log(1/3*x + e)^3 - 6*log(1/3*x + e)^2 + 6*log(1/
3*x + e) - 3)*(x + 3*e)^2 - 48*(e*log(1/3*x + e)^3 - 3*e*log(1/3*x + e)^2 + 6*e*log(1/3*x + e) - 6*e)*(x + 3*e
))*e - 27/4*(12*e^2*log(1/3*x + e)^3 + (2*log(1/3*x + e)^2 - 2*log(1/3*x + e) + 1)*(x + 3*e)^2 - 24*(e*log(1/3
*x + e)^2 - 2*e*log(1/3*x + e) + 2*e)*(x + 3*e))*e + 81/4*(18*e^2*log(x + 3*e)^2 + x^2 - 18*x*e + 54*e^2*log(x
 + 3*e))*e - 81/2*(x^2 - 6*x*e + 18*e^2*log(x + 3*e))*e + 19683*e^12*log(x + 3*e) + 518319/280*e^9*log(x + 3*e
) - 80433/20*e^6*log(x + 3*e) - 1323/2*e^3*log(x + 3*e) - 27*log(3)*log(x + 3*e) + 27/2*log(x + 3*e)^2 - 1/756
0*(280*x^9 - 945*x^8*e + 3240*x^7*e^2 - 11340*x^6*e^3 + 40824*x^5*e^4 - 153090*x^4*e^5 + 612360*x^3*e^6 - 2755
620*x^2*e^7 + 16533720*x*e^8 - 49601160*e^9*log(x + 3*e))*log(1/3*x + e) + 19/180*(10*x^6 - 36*x^5*e + 135*x^4
*e^2 - 540*x^3*e^3 + 2430*x^2*e^4 - 14580*x*e^5 + 43740*e^6*log(x + 3*e))*log(1/3*x + e) - 11/2*(2*x^3 - 9*x^2
*e + 54*x*e^2 - 162*e^3*log(x + 3*e))*log(1/3*x + e) + x + 27*log(x + 3*e)

________________________________________________________________________________________

mupad [B]  time = 1.36, size = 107, normalized size = 3.96 x+27ln(x+3e)ln(x3+e)3(x333)+ln(x3+e)44ln(x3+e)(x927x6+9x3)+ln(x3+e)2(x663x3+272)9x3+3x62x99+x12324

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((27*x - log(x/3 + exp(1))^2*(exp(1)*(729*x^2 - 81*x^5) + 270*x^3 - 27*x^6 - 243) - log(x/3 + exp(1))*(exp(
1)*(2187*x^2 - 486*x^5 + 27*x^8) + 891*x^3 - 171*x^6 + 9*x^9 - 729) - 972*x^3 + 270*x^6 - 28*x^9 + x^12 - log(
x/3 + exp(1))^3*(81*x^2*exp(1) + 27*x^3 - 27) + exp(1)*(729*x^5 - 2187*x^2 - 81*x^8 + 3*x^11 + 81) + 729)/(27*
x + 81*exp(1)),x)

[Out]

x + 27*log(x + 3*exp(1)) - log(x/3 + exp(1))^3*(x^3/3 - 3) + log(x/3 + exp(1))^4/4 - log(x/3 + exp(1))*(9*x^3
- x^6 + x^9/27) + log(x/3 + exp(1))^2*(x^6/6 - 3*x^3 + 27/2) - 9*x^3 + (3*x^6)/2 - x^9/9 + x^12/324

________________________________________________________________________________________

sympy [B]  time = 0.40, size = 107, normalized size = 3.96 x12324x99+3x629x3+x+(3x33)log(x3+e)3+(x663x3+272)log(x3+e)2+(x927+x69x3)log(x3+e)+log(x3+e)44+27log(x+3e)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-81*x**2*exp(1)-27*x**3+27)*ln(exp(1)+1/3*x)**3+((81*x**5-729*x**2)*exp(1)+27*x**6-270*x**3+243)*l
n(exp(1)+1/3*x)**2+((-27*x**8+486*x**5-2187*x**2)*exp(1)-9*x**9+171*x**6-891*x**3+729)*ln(exp(1)+1/3*x)+(3*x**
11-81*x**8+729*x**5-2187*x**2+81)*exp(1)+x**12-28*x**9+270*x**6-972*x**3+27*x+729)/(81*exp(1)+27*x),x)

[Out]

x**12/324 - x**9/9 + 3*x**6/2 - 9*x**3 + x + (3 - x**3/3)*log(x/3 + E)**3 + (x**6/6 - 3*x**3 + 27/2)*log(x/3 +
 E)**2 + (-x**9/27 + x**6 - 9*x**3)*log(x/3 + E) + log(x/3 + E)**4/4 + 27*log(x + 3*E)

________________________________________________________________________________________