Optimal. Leaf size=28 \[ 4+x+x \left (5+\frac {\log \left (\log \left (\frac {e^{x+e^x x^2}}{x}\right )\right )}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1+x+e^x \left (2 x^2+x^3\right )+6 x \log \left (\frac {e^{x+e^x x^2}}{x}\right )}{x \log \left (\frac {e^{x+e^x x^2}}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^x x (2+x)}{\log \left (\frac {e^{x+e^x x^2}}{x}\right )}+\frac {-1+x+6 x \log \left (\frac {e^{x+e^x x^2}}{x}\right )}{x \log \left (\frac {e^{x+e^x x^2}}{x}\right )}\right ) \, dx\\ &=\int \frac {e^x x (2+x)}{\log \left (\frac {e^{x+e^x x^2}}{x}\right )} \, dx+\int \frac {-1+x+6 x \log \left (\frac {e^{x+e^x x^2}}{x}\right )}{x \log \left (\frac {e^{x+e^x x^2}}{x}\right )} \, dx\\ &=\int \left (6+\frac {-1+x}{x \log \left (\frac {e^{x+e^x x^2}}{x}\right )}\right ) \, dx+\int \left (\frac {2 e^x x}{\log \left (\frac {e^{x+e^x x^2}}{x}\right )}+\frac {e^x x^2}{\log \left (\frac {e^{x+e^x x^2}}{x}\right )}\right ) \, dx\\ &=6 x+2 \int \frac {e^x x}{\log \left (\frac {e^{x+e^x x^2}}{x}\right )} \, dx+\int \frac {-1+x}{x \log \left (\frac {e^{x+e^x x^2}}{x}\right )} \, dx+\int \frac {e^x x^2}{\log \left (\frac {e^{x+e^x x^2}}{x}\right )} \, dx\\ &=6 x+2 \int \frac {e^x x}{\log \left (\frac {e^{x+e^x x^2}}{x}\right )} \, dx+\int \left (\frac {1}{\log \left (\frac {e^{x+e^x x^2}}{x}\right )}-\frac {1}{x \log \left (\frac {e^{x+e^x x^2}}{x}\right )}\right ) \, dx+\int \frac {e^x x^2}{\log \left (\frac {e^{x+e^x x^2}}{x}\right )} \, dx\\ &=6 x+2 \int \frac {e^x x}{\log \left (\frac {e^{x+e^x x^2}}{x}\right )} \, dx+\int \frac {1}{\log \left (\frac {e^{x+e^x x^2}}{x}\right )} \, dx-\int \frac {1}{x \log \left (\frac {e^{x+e^x x^2}}{x}\right )} \, dx+\int \frac {e^x x^2}{\log \left (\frac {e^{x+e^x x^2}}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 21, normalized size = 0.75 \begin {gather*} 6 x+\log \left (\log \left (\frac {e^{x+e^x x^2}}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 19, normalized size = 0.68 \begin {gather*} 6 \, x + \log \left (\log \left (\frac {e^{\left (x^{2} e^{x} + x\right )}}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.38, size = 18, normalized size = 0.64 \begin {gather*} 6 \, x + \log \left (-x^{2} e^{x} - x + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 20, normalized size = 0.71
method | result | size |
default | \(6 x +\ln \left (\ln \left (\frac {{\mathrm e}^{{\mathrm e}^{x} x^{2}+x}}{x}\right )\right )\) | \(20\) |
risch | \(6 x +\ln \left (\ln \left ({\mathrm e}^{x \left ({\mathrm e}^{x} x +1\right )}\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x \left ({\mathrm e}^{x} x +1\right )}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x \left ({\mathrm e}^{x} x +1\right )}}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x \left ({\mathrm e}^{x} x +1\right )}}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x \left ({\mathrm e}^{x} x +1\right )}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x \left ({\mathrm e}^{x} x +1\right )}}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{x \left ({\mathrm e}^{x} x +1\right )}}{x}\right )^{3}-2 i \ln \relax (x )\right )}{2}\right )\) | \(146\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.84, size = 25, normalized size = 0.89 \begin {gather*} 6 \, x + 2 \, \log \relax (x) + \log \left (\frac {x^{2} e^{x} + x - \log \relax (x)}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.00, size = 17, normalized size = 0.61 \begin {gather*} 6\,x+\ln \left (x+\ln \left (\frac {1}{x}\right )+x^2\,{\mathrm {e}}^x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 17, normalized size = 0.61 \begin {gather*} 6 x + \log {\left (\log {\left (\frac {e^{x^{2} e^{x} + x}}{x} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________